关键词: 血小板反应蛋白; 突触; 电压依赖性钙通道; 神经连接蛋白
Key words: Thrombospondins; synapse; voltage-dependent calcium channel; neuroligin
引用本文: 巩朝阳, 向高, 刘开鑫, 张海鸿. 血小板反应蛋白在突触形成中的作用及机制研究进展. 中国修复重建外科杂志, 2019, 33(1): 124-128. doi: 10.7507/1002-1892.201809006 复制
目录
血小板反应蛋白在突触形成中的作用及机制研究进展
Format
Content
华西期刊社客户端
查看全文
关键词: 血小板反应蛋白; 突触; 电压依赖性钙通道; 神经连接蛋白
Key words: Thrombospondins; synapse; voltage-dependent calcium channel; neuroligin
引用本文: 巩朝阳, 向高, 刘开鑫, 张海鸿. 血小板反应蛋白在突触形成中的作用及机制研究进展. 中国修复重建外科杂志, 2019, 33(1): 124-128. doi: 10.7507/1002-1892.201809006 复制
1. | Mosher DF, Adams JC. Adhesion-modulating/matricellular ECM protein families: a structural, functional and evolutionary appraisal. Matrix Biol, 2012, 31(3): 155-161. |
2. | Masli S, Sheibani N, Cursiefen C, et al. Matricellular protein thrombospondins: influence on ocular angiogenesis, wound healing and immuneregulation. Curr Eye Res, 2014, 39(8): 759-774. |
3. | Ferrer-Ferrer M, Dityatev A. Shaping synapses by the neural extracellular matrix. Front Neuroanat, 2018, 12: 40. |
4. | Risher WC, Eroglu C. Thrombospondins as key regulators of synaptogenesis in the central nervous system. Matrix Biol, 2012, 31(3): 170-177. |
5. | Wang B, Guo W, Huang Y. Thrombospondins and synaptogenesis. Neural Regen Res, 2012, 7(22): 1737-1743. |
6. | Farhy-Tselnicker I, Allen NJ. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev, 2018, 13(1): 7. |
7. | Torres MD, Garcia O, Tang C, et al. Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome. Free Radic Biol Med, 2018, 114: 10-14. |
8. | Chistiakov DA, Melnichenko AA, Myasoedova VA, et al. Thrombospondins: a role in cardiovascular disease. Int J Mol Sci, 2017, 18(7): pii: E1540. |
9. | Yan Q, Murphy-Ullrich JE, Song Y. Molecular and structural insight into the role of key residues of thrombospondin-1 and calreticulin in thrombospondin-1-calreticulin binding. Biochemistry, 2011, 50(4): 566-573. |
10. | Huang T, Sun L, Yuan X, et al. Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget, 2017, 8(48): 84546-84558. |
11. | Calabro NE, Kristofik NJ, Kyriakides TR. Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta, 2014, 1840(8): 2396-2402. |
12. | Risher ML, Sexton HG, Risher WC, et al. Adolescent intermittent alcohol exposure: dysregulation of thrombospondins and synapse formation are associated with decreased neuronal density in the adult hippocampus. Alcohol Clin Exp Res, 2015, 39(12): 2403-2413. |
13. | Xu J, Xiao N, Xia J. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci, 2010, 13(1): 22-24. |
14. | Ohnishi H, Kaneko Y, Okazawa H, et al. Differential localization of Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 and CD47 and its molecular mechanisms in cultured hippocampal neurons. J Neurosci, 2005, 25(10): 2702-2711. |
15. | Abumrad NA, Ajmal M, Pothakos K, et al. CD36 expression and brain function: does CD36 deficiency impact learning ability? Prostaglandins Other Lipid Mediat, 2005, 77(1-4): 77-83. |
16. | Beumer K, Matthies HJ, Bradshaw A, et al. Integrins regulate DLG/FAS2 via a CaM kinase II-dependent pathway to mediate synapse elaboration and stabilization during postembryonic development. Development, 2002, 129(14): 3381-3391. |
17. | Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci, 2006, 7(11): 850-859. |
18. | Ehlers MD. Synapse formation: astrocytes spout off. Curr Biol, 2005, 15(4): R134-R137. |
19. | Risher WC, Kim N, Koh S, et al. Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J Cell Biol, 2018, 217(10): 3747-3765. |
20. | Christopherson KS, Ullian EM, Stokes CC, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell, 2005, 120(3): 421-433. |
21. | Eroglu C, Allen NJ, Susman MW, et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell, 2009, 139(2): 380-392. |
22. | Liu Z, Jiang Y, Li X, et al. Embryonic stem cell-derived peripheral auditory neurons form neural connections with mouse central auditory neurons in vitro via the α2δ1 receptor. Stem Cell Reports, 2018, 11(1): 157-170. |
23. | Arikkath J, Campbell KP. Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol, 2003, 13(3): 298-307. |
24. | Cole RL, Lechner SM, Williams ME, et al. Differential distribution of voltage-gated calcium channel alpha-2 delta (alpha2delta) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. J Comp Neurol, 2005, 491(3): 246-269. |
25. | Davies A, Hendrich J, Van Minh AT, et al. Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci, 2007, 28(5): 220-228. |
26. | Liu A, Garg P, Yang S, et al. Epidermal growth factor-like repeats of thrombospondins activate phospholipase Cgamma and increase epithelial cell migration through indirect epidermal growth factor receptor activation. J Biol Chem, 2009, 284(10): 6389-6402. |
27. | Crawford DC, Jiang X, Taylor A, et al. Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro. J Neurosci, 2012, 32(38): 13100-13110. |
28. | Faria LC, Gu F, Parada I, et al. Epileptiform activity and behavioral arrests in mice overexpressing the calcium channel subunit α2δ-1. Neurobiol Dis, 2017, 102: 70-80. |
29. | Maćkowiak M, Mordalska P, Wędzony K. Neuroligins, synapse balance and neuropsychiatric disorders. Pharmacol Rep, 2014, 66(5): 830-835. |
30. | Singh SK, Eroglu C. Neuroligins provide molecular links between syndromic and nonsyndromic autism. Sci Signal, 2013, 6(283): re4. |
31. | Hoon M, Soykan T, Falkenburger B, et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A, 2011, 108(7): 3053-3058. |
32. | Bemben MA, Shipman SL, Nicoll RA, et al. The cellular and molecular landscape of neuroligins. Trends Neurosci, 2015, 38(8): 496-505. |
33. | Kim DH, Lim H, Lee D, et al. Thrombospondin-1 secreted by human umbilical cord blood-derived mesenchymal stem cells rescues neurons from synaptic dysfunction in Alzheimer’s disease model. Sci Rep, 2018, 8(1): 354. |
34. | Wittenmayer N, Körber C, Liu H, et al. Postsynaptic Neuroligin1 regulates presynaptic maturation. Proc Natl Acad Sci U S A, 2009, 106(32): 13564-13569. |
35. | Bilbo SD, Schwarz JM. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci, 2009, 3: 14. |
36. | Yamauchi Y, Kuroki M, Imakiire T, et al. Thrombospondin-1 differentially regulates release of IL-6 and IL-10 by human monocytic cell line U937. Biochemical and biophysical research communications, 2002, 290(5): 1551-1557. |
37. | Feng Z, Ko CP. Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-beta1. J Neurosci, 2008, 28(39): 9599-9609. |
38. | Packard M, Mathew D, Budnik V. Wnts and TGF beta in synaptogenesis: old friends signalling at new places. Nat Rev Neurosci, 2003, 4(2): 113-120. |
39. | Krady MM, Zeng J, Yu J, et al. Thrombospondin-2 modulates extracellular matrix remodeling during physiological angiogenesis. Am J Pathol, 2008, 173(3): 879-891. |
40. | Svitkina T, Lin WH, Webb DJ, et al. Regulation of the postsynaptic cytoskeleton: roles in development, plasticity, and disorders. J Neurosci, 2010, 30(45): 14937-14942. |
41. | Tashiro A, Yuste R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci, 2004, 26(3): 429-440. |
42. | Sweetwyne MT, Murphy-Ullrich JE. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms. Matrix Biol, 2012, 31(3): 178-186. |
43. | Zhao Y, Pu D, Sun Y, et al. High glucose-induced defective thrombospondin-1 release from astrocytes via TLR9 activation contributes to the synaptic protein loss. Exp Cell Res, 2018, 363(2): 171-178. |
44. | Jayakumar AR, Tong XY, Curtis KM, et al. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies. J Neurochem, 2014, 131(3): 333-347. |