中国修复重建外科杂志

中国修复重建外科杂志

生长因子缓释微球复合体在脂肪移植领域的研究进展

查看全文

目的 综述生长因子缓释微球复合体在脂肪移植领域的研究进展。 方法 广泛查阅近年来有关生长因子缓释微球复合体在脂肪移植领域的国内外文献并进行分析总结。 结果 缓释微球载体材料包括天然高分子材料和合成高分子材料。不同缓释微球材料与不同生长因子相结合构成的缓释复合体能促进移植脂肪血管化,提高移植物成活率,降低液化、钙化和坏死等并发症的发生率。 结论 生长因子缓释微球复合体因具有持续性和可控性等特点,已成为脂肪移植领域的研究热点,具有广阔应用前景。

Objective To review the research progress of growth factor sustained-release microspheres in fat transplantation. Methods The recently published 1iterature at home and abroad related the growth factor sustained-release microspheres in fat transplantation was reviewed and analyzed. Results The sustained-release microsphere carrier materials include natural polymer materials and synthetic polymer materials.The sustained-release complexes of different microsphere materials with different growth factors can promote the vascularization of transplanted fat in a timely manner, improve the survival rate of grafts, and reduce the incidence of complications such as liquefaction, calcification, and necrosis. Conclusion The growth factor sustained-release microspheres have the characteristics of persistence and controllability, which is a research hotspot in the field of fat transplantation and has broad application prospects.

关键词: 生长因子; 缓释微球; 脂肪移植; 血管化

Key words: Growth factor; sustained-release microsphere; fat transplantation; vascularization

引用本文: 陈卓杰, 程茜, 俞晓芳, 何玉仓, 李力群. 生长因子缓释微球复合体在脂肪移植领域的研究进展. 中国修复重建外科杂志, 2017, 31(11): 1402-1406. doi: 10.7507/1002-1892.201703125 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. 谢芸, 鲁峰, 刘宏伟, 等. 自体脂肪移植在整形与修复重建外科领域应用的指南. 中国修复重建外科杂志, 2016, 30(7): 793-798.
2. Zielins ER, Brett EA, Longaker MT, et al. Autologous Fat Grafting: The Science Behind the Surgery. Aesthet Surg J, 2016, 36(4): 488-496.
3. Guo J, Nguyen A, Banyard DA, et al. Stromal vascular fraction: A regenerative reality? Part 2: mechanisms of regenerative action. J Plast Reconstr Aesthet Surg, 2016, 69(2): 180-188.
4. Dong Z, Peng Z, Chang Q, et al. The angiogenic and adipogenic modes of adipose tissue after free fat grafting. Plast Reconstr Surg, 2015, 135(3): 556e-567e.
5. Rojas-Rodriguez R, Gealekman O, Kruse ME, et al. Adipose tissue angiogenesis assay. Methods Enzymol, 2014, 537: 75-91.
6. 梁杰, 赵坤, 汤炀炀. 肝细胞生长因子和表皮生长因子对移植颗粒脂肪成活的影响. 中国现代医学杂志, 2012, 22(4): 29-33.
7. 郑丹宁, 雷华, 李青峰. 多种生长因子及 DMEM 培养液对植入脂肪成活率影响的研究. 中国美容医学, 2005, 14(1): 34-36.
8. Lu F, Li J, Gao J, et al. Improvement of the survival of human autologous fat transplantation by using VEGF-transfected adipose-derived stem cells. Plastic Reconstr Surg, 2009, 124(5): 1437-1446.
9. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci, 2012, 37(1): 106-126.
10. Ding SL, ZhangMY, Tang SJ, et al. Effect of calcium alginate microsphere loaded with vascular endothelial growth factor on adipose tissue transplantation. Ann Plast Surg, 2015, 75(6): 644-651.
11. Moya ML, Cheng MH, Huang JJ, et al. The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials, 2010, 31(10): 2816-2826.
12. Lee KY, Peters MC, Mooney DJ. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release, 2003, 87(1-3): 49-56.
13. Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng Part B Rev, 2014, 20(6): 683-696.
14. Kim Y, Ko H, Kwon IK, et al. Extracellular Matrix Revisited: Roles in Tissue Engineering. Int Neurourol J, 2016, 20(Suppl 1): S23-29.
15. Santoro M, Tatara AM, Mikos AG. Gelatin carriers for drug and cell delivery in tissue engineering. J Control Release, 2014, 190: 210-218.
16. Kimura Y, Tsuji W, Yamashiro H, et al. In situ adipogenesis in fat tissue augmented by collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. J Tissue Eng Regen Med, 2010, 4(1): 55-61.
17. Hiraoka Y, Yamashiro H, Yasuda K, et al. In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng, 2006, 12(6): 1475-1487.
18. Kimura Y, Ozeki M, Inamoto T, et al. Time course of de novo adipogenesis in matrigel by gelatin microspheres incorporating basic fibroblast growth factor. Tissue Eng, 2002, 8(4): 603-613.
19. Kimura Y, Ozeki M, Inamoto T, et al. Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials, 2003, 24(14): 2513-2521.
20. Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles. Nanoscale, 2013, 5(8): 3103-3111.
21. Zhang MY, Ding SL, Tang SJ, et al. Effect of chitosan nanospheres loaded with VEGF on adipose tissue transplantation: a preliminary report. Tissue Eng Part A, 2014, 20(17-18): 2273-2282.
22. Huang G, Mei X, Xiao F, et al. Applications of important polysaccharides in drug delivery. Curr Pharm Des, 2015, 21(25): 3692-3696.
23. 伍俊妍, 李国成, 蔡尤彪. 不同缓释体系下基因重组型碱性成纤维细胞生长因子对脂肪移植终体积的影响. 中国新药与临床杂志, 2009, 28(1): 7-10.
24. 靳元嵘, 杨瑟飞. 碱性成纤维细胞生长因子缓释体系诱导脂肪移植体早期血运重建. 中国组织工程研究, 2013, 17(44): 7745-7750.
25. 靳元嵘, 杨瑟飞. 不同细胞因子对脂肪移植体中前脂细胞和早期血运重建的生物学效应. 中国口腔颌面外科杂志, 2013, 11(6): 468-471.
26. Greene JJ, Sidle DM. The hyaluronic acid fillers: current understanding of the tissue device interface. Facial Plast Surg Clin North Am, 2015, 23(4): 423-432.
27. 赵威. HA-VEGF 复合缓释体对大鼠自体组织移植物血管再生和组织成活率的影响. 太原: 山西医科大学, 2011.
28. Zhao Z, Li Y, Xie MB. Silk fibroin-based nanoparticles for drug delivery. Int J Mol Sci, 2015, 16(3): 4880-4903.
29. Mottaghitalab F, Farokhi M, Shokrgozar MA, et al. Silk fibroin nanoparticle as a novel drug delivery system. J Control Release, 2015, 206: 161-176.
30. Zhou J, Zhang B, Liu X, et al. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydr Polym, 2016, 143: 301-309.
31. Hanken H, Göehler F, Smeets R, et al. Attachment, Viability and Adipodifferentiation of Pre-adipose Cells on Silk Scaffolds with and Without Co-expressed FGF-2 and VEGF. In Vivo, 2016, 30(5): 567-572.
32. 刘雨. 丝素材料装载碱性成纤维细胞生长因子 (bFGF) 后的促细胞生长作用. 苏州: 苏州大学, 2010.
33. Ishihara M, Kishimoto S, Takikawa M, et al. Biomedical application of low molecular weight heparin/protamine nano/micro particles as cell-and growth factor-carriers and coating matrix. Int J Mol Sci, 2015, 16(5): 11785-11803.
34. Nakamura S, Ishihara M, Takikawa M, et al. Increased survival of free fat grafts and vascularization in rats with local delivery of fragmin/protamine microparticles containing FGF-2 (F/P MP-F). J Biomed Materials Res Part B Appl Biomater, 2011, 96(2): 234-241.
35. Tyler B, Gullotti D, Mangraviti A, et al. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev, 2016, 107: 163-175.
36. Li L, Pan S, Ni B, et al. Improvement in autologous human fat transplant survival with SVF plus VEGF-PLA nano-sustained release microspheres. Cell Biol Int, 2014, 38(8): 962-970.
37. 察鹏飞. 人细胞外基质支架联合 bFGF-PLA 纳米微球缓释系统对人脂肪来源干细胞构建工程化脂肪组织的影响研究. 广州: 南方医科大学, 2012.
38. Han FY, Thurecht KJ, Whittaker AK, et al. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol, 2016, 7: 185.
39. Chung CW, Marra KG, Li H, et al. VEGF microsphere technology to enhance vascularization in fat grafting. Ann Plastic Surg, 2012, 69(2): 213-219.
40. Marra KG, DeFail AJ, Clavijo-Alvarez JA, et al. FGF-2 enhances vascularization for adipose tissue engineering. Plast Reconstr Surg, 2008, 121(4): 1153-1164.
41. Zhang K, TangX, Zhang J, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release, 2014, 183: 77-86.
42. Yuksel E, Weinfeld AB, Cleek R, et al. De novo adipose tissue generation through long-term, local delivery of insulin and insulin-like growth factor-1 by PLGA/PEG microspheres in an in vivo rat model: a novel concept and capability. Plast Reconstr Surg, 2000, 105(5): 1721-1729.
43. Yuksel E, Weinfeld AB, Cleek R, et al. Increased free fat-graft survival with the long-term, local delivery of insulin, insulin-like growth factor-I, and basic fibroblast growth factor by PLGA/PEG microspheres. Plast Reconstr Surg, 2000, 105(5): 1712-1720.