中国修复重建外科杂志

中国修复重建外科杂志

矢状位平衡影像学评价之争议与现状

查看全文

目的 对骨盆-脊柱矢状位平衡的影像学评价现状及争议展开综述,为其在临床的合理应用提供参考。 方法 广泛查阅国内外关于骨盆-脊柱矢状位参数及其临床应用的相关文献,从目前常用的各项参数的临床应用、各自的优点和局限性、如何合理运用这些参数等方面进行总结。 结果 矢状位参数各有其优缺点,而且受种族、年龄影响。脊柱矢状轴仅能反映整体情况,T1 骨盆角综合了躯干倾斜和骨盆代偿信息,但在术中不易控制,而西方人群的矫形目标可能不适合于中国人群。 结论 在评估矢状位平衡时需合理运用各参数的优势,衡量整体平衡时也需考虑局部情况,而且对于不同人群需要采用不同的评价标准。

Objective To review the process of radiographic measurements of sagittal balance and offer reference for the clinical practice. Methods The related literature of spino-pelvic sagittal parameters and their clinical application was reviewed and analyzed from the aspects such as the clinical application, the advantages and disadvantages, and how to use them effectively. Results All parameters have their advantages and disadvantages, and they are influenced by age and race. Sagittal vertical axis can only reflect the global balance, and T1 pelvic angle which accounts for both spinal inclination and pelvic tilt can’t be controlled in the surgery. The correction goal for western people may be not suitable for Chinese. Conclusion The parameters should be used wisely when evaluating the sagittal balance, the global balance and local balance should be considered together and the different groups of people need different correction goals.

关键词: 脊柱矫形; 矢状位平衡; 矢状位参数; 影像学; 骨盆

Key words: Spinal correction; sagittal balance; sagittal parameter; radiographic measurement; pelvic

引用本文: 周思宇, 孙卓然, 李危石. 矢状位平衡影像学评价之争议与现状. 中国修复重建外科杂志, 2018, 32(11): 1365-1370. doi: 10.7507/1002-1892.201808080 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Smith JS, Shaffrey CI, Bess S, et al. Recent and emerging advances in spinal deformity. Neurosurgery, 2017, 80(3S): S70-S85.
2. Jackson RP, McManus AC. Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. A prospective controlled clinical study. Spine (Phila Pa 1976), 1994, 19(14): 1611-1618.
3. Glassman SD, Berven S, Bridwell K, et al. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976), 2005, 30(6): 682-688.
4. Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976), 2005, 30(18): 2024-2029.
5. Mac-Thiong JM, Transfeldt EE, Mehbod AA, et al. Can C7 plumbline and gravity line predict health related quality of life in adult scoliosis? Spine (Phila Pa 1976), 2009, 34(15): E519-E527.
6. Lafage V, Schwab F, Patel A, et al. Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976), 2009, 34(17): E599-E606.
7. Schwab FJ, Blondel B, Bess S, et al. Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976), 2013, 38(13): E803-E812.
8. Schwab F, Patel A, Ungar B, et al. Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery Spine (Phila Pa 1976), 2010, 35(25): 2224-2231.
9. Ames CP, Smith JS, Scheer JK, et al. Impact of spinopelvic alignment on decision making in deformity surgery in adults: A review. J Neurosurg Spine, 2012, 16(6): 547-564.
10. Radovanovic I, Urquhart JC, Ganapathy V, et al. Influence of postoperative sagittal balance and spinopelvic parameters on the outcome of patients surgically treated for degenerative lumbar spondylolisthesis. J Neurosurg Spine, 2017, 26(4): 448-453.
11. Dohzono S, Toyoda H, Matsumoto T, et al. The influence of preoperative spinal sagittal balance on clinical outcomes after microendoscopic laminotomy in patients with lumbar spinal canal stenosis. J Neurosurg Spine, 2015, 23(1): 49-54.
12. Lee BH, Yang JH, Kim HS, et al. Effect of sagittal balance on risk of falling after lateral lumbar interbody fusion surgery combined with posterior surgery. Yonsei Med J, 2017, 58(6): 1177-1185.
13. Barrey C, Roussouly P, Perrin G, et al. Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J, 2011, 20(Suppl 5): 626-633.
14. 李危石, 费晗, 陈仲强, 等. 退变性腰椎侧凸患者腰椎前凸矫正程度与疗效的关系. 中国脊柱脊髓杂志, 2016, 26(10): 912-918.
15. 马清伟, 李危石, 孙卓然, 等. 退变性腰椎侧凸矫形术后腰椎前凸角变化对临床疗效的影响. 中国脊柱脊髓杂志, 2017, 27(12): 1057-1062.
16. Schwab F, Lafage V, Boyce R, et al. Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa 1976), 2006, 31(25): E959-E967.
17. 宋凯, 张永刚, 李杰静, 等. 肺门作为躯干重心对强直性脊柱炎胸腰段后凸畸形矫形的意义. 中国骨与关节杂志, 2014, 3(10): 756-762.
18. Morvan G, Mathieu P, Vuillemin V, et al. Standardized way for imaging of the sagittal spinal balance. Eur Spine J, 2011, 20(Suppl 5): 602-608.
19. Yang C, Yang M, Wei X, et al. Lumbar lordosis minus thoracic kyphosis: a novel regional predictor for sagittal balance in elderly populations. Spine (Phila Pa 1976), 2016, 41(5): 399-403.
20. Mac-Thiong JM, Roussouly P, Berthonnaud E, et al. Age- and sex-related variations in sagittal sacropelvic morphology and balance in asymptomatic adults. Eur Spine J, 2011, 20(Suppl 5): 572-577.
21. Barrey C, Roussouly P, Le Huec JC, et al. Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J, 2013, 22(Suppl 6): S834-S841.
22. Protopsaltis T, Schwab F, Bronsard N, et al. The T1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg (Am), 2014, 96(19): 1631-1640.
23. Vialle R, Levassor N, Rillardon L, et al. Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am, 2005, 87(2): 260-267.
24. Ryan DJ, Protopsaltis TS, Ames CP, et al. T1 pelvic angle (TPA) effectively evaluates sagittal deformity and assesses radiographical surgical outcomes longitudinally. Spine (Phila Pa 1976), 2014, 39(15): 1203-1210.
25. Banno T, Togawa D, Arima H, et al. The cohort study for the determination of reference values for spinopelvic parameters (T1 pelvic angle and global tilt) in elderly volunteers. Eur Spine J, 2016, 25(11): 3687-3693.
26. Banno T, Hasegawa T, Yamato Y, et al. T1 pelvic angle is a useful parameter for postoperative evaluation in adult spinal deformity patients. Spine (Phila Pa 1976), 2016, 41(21): 1641-1648.
27. Qiao J, Zhu F, Xu L, et al. T1 pelvic angle: a new predictor for postoperative sagittal balance and clinical outcomes in adult scoliosis. Spine (Phila Pa 1976), 2014, 39(25): 2103-2107.
28. Yang M, Yang C, Xu Z, et al. Role of T1 pelvic angle in assessing sagittal balance in outpatients with unspecific low back pain. Medicine (Baltimore), 2016, 95(9): e2964.
29. Smith JS, Shaffrey CI, Bess S, et al. Recent and emerging advances in spinal deformity. Neurosurgery, 2017, 80(3S): S70-S85.
30. Obeid I, Boissière L, Yilgor C, et al. Global tilt: a single parameter incorporating spinal and pelvic sagittal parameters and least affected by patient positioning. Eur Spine J, 2016, 25(11): 3644-3649.
31. Obeid I, Bourghli A, Larrieu D, et al. The global tilt: evaluation of a parameter considering the globalspinopelvic alignment. Journal Medical Libanais/Lebanese Medical Journal, 2016, 64(3): 146-151.
32. Diebo BG, Oren JH, Challier V, et al. Global sagittal axis: a step toward full-body assessment of sagittal plane deformity in the human body. J Neurosurg Spine, 2016, 25(4): 494-499.
33. Ferrero E, Liabaud B, Challier V, et al. Role of pelvic translation and lower-extremity compensation to maintain gravity line position in spinal deformity. J Neurosurg Spine, 2016, 24(3): 436-446.
34. Day LM, Ramchandran S, Jalai CM, et al. Thoracolumbar realignment surgery results in simultaneous reciprocal changes in lower extremities and cervical spine. Spine (Phila Pa 1976), 2017, 42(11): 799-807.
35. Schwab F, Lafage V, Patel A, et al. Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976), 2009, 34(17): 1828-1833.
36. 孙卓然, 李危石, 陈仲强, 等. 正常国人脊柱-骨盆矢状位序列拟合关系研究. 中国脊柱脊髓杂志, 2015, 25(1): 1-5.
37. 马清伟, 李危石, 孙卓然, 等. 中老年人群脊柱-骨盆矢状位参数及其序列拟合关系. 中国脊柱脊髓杂志, 2016, 26(2): 146-150.
38. Labelle H, Mac-Thiong JM, Roussouly P. Spino-pelvic sagittal balance of spondylolisthesis: a review and classification. Eur Spine J, 2011, 20(Suppl 5): 641-646.
39. Upasani VV, Tis J, Bastrom T, et al. Analysis of sagittal alignment in thoracic and thoracolumbar curves in adolescent idiopathic scoliosis: how do these two curve types differ? Spine (Phila Pa 1976), 2007, 32(12): 1355-1359.
40. Mac-Thiong JM, Labelle H, Charlebois M, et al. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine (Phila Pa 1976), 2003, 28(13): 1404-1409.
41. Roussouly P, Pinheiro-Franco JL. Sagittal parameters of the spine: biomechanical approach. Eur Spine J, 2011, 20(Suppl 5): 578-585.
42. Kepler CK, Rihn JA, Radcliff KE, et al. Restoration of lordosis and disk height after single-level transforaminal lumbar interbody fusion. Orthop Surg, 2012, 4(1): 15-20.
43. Kim SB, Jeon TS, Heo YM, et al. Radiographic results of single level transforaminal lumbar interbody fusion in degenerative lumbar spine disease: focusing on changes of segmental lordosis in fusion segment. Clin Orthop Surg, 2009, 1(4): 207-213.
44. Rothenfluh DA, Mueller DA, Rothenfluh E, et al. Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J, 2015, 24(6): 1251-1258.
45. Yamada K, Abe Y, Yanagibashi Y, et al. Mid- and long-term clinical outcomes of corrective fusion surgery which did not achieve sufficient pelvic incidence minus lumbar lordosis value for adult spinal deformity. Scoliosis, 2015, 10(Suppl 2): S17.
46. Schwab F, Ungar B, Blondel B, et al. Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976), 2012, 37(12): 1077-1082.
47. Sun XY, Zhang XN, Hai Y. Optimum pelvic incidence minus lumbar lordosis value after operation for patients with adult degenerative scoliosis. Spine J, 2017, 17(7): 983-989.
48. Zhang HC, Zhang ZF, Wang ZH, et al. Optimal pelvic incidence minus lumbar lordosis mismatch after long posterior instrumentation and fusion for adult degenerative scoliosis. Orthop Surg, 2017, 9(3): 304-310.
49. Roussouly P, Gollogly S, Noseda O, et al. The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine (Phila Pa 1976), 2006, 31(11): E320-E325.
50. Barrey C, Jund J, Noseda O, et al. Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J, 2007, 16(9): 1459-1467.
51. Debarge R, Demey G, Roussouly P. Sagittal balance analysis after pedicle subtraction osteotomy in ankylosing spondylitis. Eur Spine J, 2011, 20(Suppl 5): 619-625.
52. Bourghli A, Aunoble S, Reebye O, et al. Correlation of clinical outcome and spinopelvic sagittal alignment after surgical treatment of low-grade isthmic spondylolisthesis. Eur Spine J, 2011, 20(Suppl 5): 663-668.
53. Hey HWD, Teo AQA, Tan KA, et al. How the spine differs in standing and in sitting-important considerations for correction of spinal deformity. Spine J, 2017, 17(6): 799-806.
54. Claeys K, Brumagne S, Deklerck J, et al. Sagittal evaluation of usual standing and sitting spinal posture. J Bodyw Mov Ther, 2016, 20(2): 326-333.
55. Lee JH, Na KH, Kim JH, et al. Is pelvic incidence a constant, as everyone knows? Changes of pelvic incidence in surgically corrected adult sagittal deformity. Eur Spine J, 2016, 25(11): 3707-3714.
56. Jean L. Influence of age and sagittal balance of the spine on the value of the pelvic incidence. Eur Spine J, 2014, 23(7): 1394-1399.