中国修复重建外科杂志

中国修复重建外科杂志

单髁关节置换术股骨髓内定位对股骨假体力线影响的影像学研究

查看全文

目的研究单髁关节置换术(unicompartmental knee arthroplasty,UKA)中股骨髓内定位导杆影像学位置特征及其对股骨假体力线的影响。 方法2016 年 8 月—11 月,收治 50 例(50 膝)原发性膝关节前内侧骨关节炎患者。男 10 例,女 40 例;年龄 62~77 岁,平均 68.8 岁。膝内翻畸形角度为(5.22±3.46)°,屈曲畸形角度为(7.42±2.65)°;膝关节活动度(range of motion,ROM)为(106.85±7.62)°;美国特种外科医院(HSS)评分为(68.26±4.65)分。采用 MicroPlasty 牛津膝关节微创置换系统行 UKA。术中及术后 X 线片测量股骨髓内导杆与股骨解剖轴线在冠状位及矢状位的夹角、股骨假体内外翻角(femoral component valgus/varus angle,FCVA)、股骨假体屈曲角(femoral component posterior slope angle,FCPSA)、膝关节内翻及屈曲畸形角度;术后测量膝关节 ROM、HSS 评分。 结果术中 X 线片测量示股骨髓内导杆与髓腔解剖轴线在冠状位均呈外侧交角,角度为 0.28~2.06°,平均 0.96°;在矢状位呈后方交角,角度为 0.09~0.48°,平均 0.23°。12 例(24%)冠状位上股骨髓内导杆的髓内段和髓外段部分成角形变(>1°)。术后 X 线片测量示股骨假体内翻 38 例(76%),FCVA 为–1.76~4.08°,平均 2.21°;FCPSA 为 7.12~13.86°,平均 9.16°。患者均获随访,随访时间 22~26 个月,平均 24.5 个月。术后切口均Ⅰ期愈合。末次随访时,膝内翻畸形角度为(1.82±1.05)°、屈曲畸形角度为(2.54±1.86)°,ROM 为(124.62±5.85)°、HSS 评分为(91.58±3.65)分,与术前比较差异均有统计学意义(P<0.05)。随访期间均未出现衬垫脱位、假体无菌性松动等并发症。 结论UKA 术中采用 MicroPlasty 牛津膝关节微创置换系统进行股骨髓内定位,可获得准确的股骨假体位置,且术后疗效优良。

ObjectiveTo explore the imaging features of intramedullary guide rod and its influence on the alignment of the femoral prosthesis in unicompartmental knee arthroplasty (UKA). MethodsBetween August 2016 and November 2016, 50 patients (50 knees) with primary anteromedial osteoarthritis were treated with UKA by Oxford MicroPlasty minimally invasive replacement system. There were 10 males and 40 females. The age ranged from 62 to 77 years with an average of 68.8 years. Preoperative varus and flexion deformity angles were (5.22±3.46)° and (7.42±2.65)°, respectively. The knee range of motion (ROM) was (106.85±7.62)°. The Hospital for Special Surgery (HSS) score was 68.26±4.65. The angles between the femoral intramedullary guide rod and the anatomical axis of femur on the coronal and sagittal planes, the femoral component valgus/varus angle (FCVA), the femoral component posterior slope angle (FCPSA), knee varus deformity angle, and knee flexion deformity angle were measured by intra- and post-operative X-ray films. The postoperative ROM and HSS score were measured. ResultsIntraoperative X-ray films measurement showed that the lateral side angles between femoral intramedullary guide rod and femoral anatomical axis were observed on coronal plane, and the angles ranged from 0.28 to 2.06° with an average of 0.96°. While the posterior side angles were observed on sagittal plane, and the angles ranged from 0.09 to 0.48° with an average of 0.23°. The angulations (>1°) between femoral intramedullary part guide rod and outside part of the rod were confirmed in 12 cases (24%) on coronal plane. Postoperative femoral prosthesis were mild varus in 38 patients (76%). The FCVA ranged from –1.76 to 4.08° with an average of 2.21°. The FCPSA ranged from 7.12 to 13.86° with an average of 9.16°. All patients were followed up 22-26 months, with an average of 24.5 months. The incisions healed by first intention. At last follow-up, the varus and flexion deformity angles were (1.82±1.05) and (2.54 ± 1.86)°, respectively. ROM was (124.62±5.85)° and HSS score was 91.58±3.65. There were significant differences between pre- and post-operative parameters (P<0.05). No complication such as dislocation or aseptic loosening of the prosthesis occurred during the follow-up. ConclusionUKA by Oxford MicroPlasty minimally invasive replacement system can obtain accurate femoral prosthesis position with the help of intramedullary guide system, and the effectiveness is excellent.

关键词: 膝关节; 单髁关节置换术; 股骨髓内定位; 股骨假体力线

Key words: Knee joint; unicompartmental knee arthroplasty; femoral intramedullary guide; femoral component alignment

引用本文: 杨涛, 涂意辉, 薛华明, 马童, 文涛, 薛龙, 王方兴, 蒙宇. 单髁关节置换术股骨髓内定位对股骨假体力线影响的影像学研究. 中国修复重建外科杂志, 2019, 33(1): 8-12. doi: 10.7507/1002-1892.201808045 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 涂意辉, 薛华明, 蔡珉巍, 等. 微创单髁置换术治疗膝内侧间室骨性关节炎的早期并发症. 中国矫形外科杂志, 2011, 19(17): 1416-1418.
2. Clarius M, Hauck C, Seeger JB, et al. Correlation of positioning and clinical results in Oxford UKA. Int Orthop, 2010, 34(8): 1145-1151.
3. KimJG, Kasat NS, Bae JH, et al. The radiological parameters correlated with the alignment of the femoral component after Oxford phase 3 unicompartmental knee replacement. J Bone Joint Surg (Br), 2012, 94(11): 1499-1505.
4. Hurst JM, Berend KR. Mobile-bearing unicondylar knee arthroplasty: the Oxford experience. Orthop Clin North Am, 2015, 46(1): 113-124.
5. Tu Y, Xue H, Ma T, et al. Superior femoral component alignment can be achieved with Oxford microplasty instrumentation after minimally invasive unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2017, 25(3): 729-735.
6. 赵东方, 孔祥朋, 王毅, 等. 第三代 Oxford 单髁假体安放位置对人工单髁关节置换术近期疗效的影响. 中国修复重建外科杂志, 2018, 32(12): 1518-1523.
7. Hurst JM, Berend KR, Adams JB, et al. Radiographic comparison of mobile-bearing partial knee single-peg versus twin-peg design. J Arthroplasty, 2015, 30(3): 475-478.
8. Morris MJ, Frye BM, Ekpo TE, et al. Unicompartmental knee replacement with new Oxford instruments. Operative Techniques in Orthopaedics, 2012, 22(4): 189-195.
9. Tsai TY, Dimitriou D, Liow MH, et al. Three-dimensional imaging analysis of unicompartmental knee arthroplasty evaluated in standing oosition: component alignment and in vivo articular contact. J Arthroplasty, 2016, 31(5): 1096-1101.
10. Jung KA, Kim SJ, Lee CS, et al. Accuracy of implantation during computer-assisted minimally invasive Oxford unicompartmental knee arthroplasty: a comparison with a conventional instrumented technique. Knee, 2010, 17(6): 387-391.
11. Kang KT, Son J, Baek C, et al. Femoral component alignment in unicompartmental knee arthroplasty leads to biomechanical change in contact stress and collateral ligament force in knee joint. Arch Orthop Trauma Surg, 2018, 138(4): 563-572.
12. White SH, Roberts S, Kuiper JH. The twin peg Oxford knee-Medium term survivorship and surgical principles. Knee, 2018, 25(2): 314-322.
13. 贾笛, 李彦林, 王国梁, 等. 利用计算机辅助技术分析膝关节单髁置换术翻修原因. 中国修复重建外科杂志, 2016, 30(1): 119-122.
14. Novotny J, Gonzalez MH, Amirouche FM, et al. Geometric analysis of potential error in using femoral intramedullary guides in total knee arthroplasty. J Arthroplasty, 2001, 16(5): 641-647.
15. Bell SW, Anthony I, Jones B, et al. Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: Data from a prospective, randomized controlled study. J Bone Joint Surg (Am), 2016, 98(8): 627-635.
16. Gulati A, Weston-Simons S, Evans D, et al. Radiographic evaluation of factors affecting bearing dislocation in the domed lateral Oxford unicompartmental knee replacement. Knee, 2014, 21(6): 1254-1257.
17. Dunn AS, Petterson SC, Plancher KD. Unicondylar knee arthroplasty: intramedullary technique. Clin Sports Med, 2014, 33(1): 87-104.