中国修复重建外科杂志

中国修复重建外科杂志

整合素αvβ3受体靶向显像骨肉瘤和诊治肺转移的初步研究

查看全文

目的 初步探讨整合素 αvβ3 受体靶向显像诊断骨肉瘤及肺转移病灶及其靶向内放射性治疗肺转移病灶的价值。 方法 一步法制备68Ga-NODAGA-RGD2177Lu-NODAGA-RGD2,体外检测其放射性比活度、放射性化学纯度(Radio-HPLC 法)和整合素 αvβ3 受体靶向特异性。取 41 只裸鼠经皮下、胫骨髓腔及尾静脉注射 MG63 人骨肉瘤细胞,分别构建皮下骨肉瘤(n=21)、原位骨肉瘤(n=5)以及骨肉瘤肺转移(n=15)模型。3 种骨肉瘤动物模型于尾静脉注射68Ga-NODAGA-RGD2,1 h 后行68Ga-NODAGA-RGD2 microPET/CT 显像;皮下骨肉瘤模型注射后 10、60、120 min,取重要脏器及肿瘤组织,行68Ga-NODAGA-RGD2 生物学分布研究。骨肉瘤肺转移灶模型于细胞注射后 7 周经尾静脉注射177Lu-NODAGA-RGD2,观察其靶向治疗骨肉瘤肺转移效果。同时,取原位骨肉瘤模型胫骨骨肉瘤组织以及骨肉瘤肺转移模型的荷瘤肺组织行组织学及免疫组织化学染色观察。 结果 体外稳定性实验显示,68Ga-NODAGA-RGD2 体外合成后 1、4、8 h,放射性化学纯度分别为 98.5%±0.3%、98.3%±0.5%、97.9%±0.4%。177Lu-NODAGA-RGD2 体外合成后 1、7、14 d,放射性化学纯度分别为 99.3%±0.7%、98.7%±1.2%、96.0%±2.8%。68Ga-NODAGA-RGD2177Lu-NODAGA-RGD2 整合素 αvβ3 受体结合实验半抑制浓度率值分别为(5.0±1.1)、(6.5±0.8)nmol/L。microPET-CT 显像,皮下骨肉瘤模型及原位骨肉瘤模型均可见明显68Ga-NODAGA-RGD2 浓聚;骨肉瘤肺转移模型在转移灶 1~2 mm 时即可见68Ga-NODAGA-RGD2 浓聚。生物学分布实验显示,皮下骨肉瘤模型中68Ga-NODAGA-RGD2 血液中清除迅速,肌肉、正常骨骼摄取极少,注入 120 min 时达峰值,为(3.85±0.84)%ID/g。骨肉瘤肺转移灶模型注射177Lu-NODAGA-RGD2 后显示其在肺转移灶浓聚,第 2 周病灶数量和大小明显降低。组织学及免疫组织化学染色结果显示肿瘤形成及其整合素受体靶向性。 结论 68Ga-NODAGA-RGD2 显像可有效探测骨肉瘤及其肺转移灶,为177Lu-NODAGA-RGD2 用于骨肉瘤肺转移的靶向治疗提供实验依据。

Objective To investigate the value of integrin αvβ3 targeted microPET/CT imaging with 68Ga-NODAGA-RGD2 as radiotracer for the detection of osteosarcoma and theranostics of osteosarcoma lung metastasis. Methods The 68Ga-NODAGA-RGD2 and 177Lu-NODAGA-RGD2 were prepared via one-step method and their stability and integrin αvβ3 binding specificity were investigated in vitro. Forty-one nude mice were injected with human MG63 osteosarcoma to established the animal model bearing subcutaneous osteosarcoma (n=21), osteosarcoma in tibia (n=5), and osteosarcoma pulmonary metastatic (n=15). The microPET-CT imaging was carried out in 3 animal models at 1 hour after tail vein injection of 68Ga-NODAGA-RGD2. Biodistribution study of 68Ga-NODAGA-RGD2 was performed in animal model bearing subcutaneous osteosarcoma at 10, 60, and 120 minutes. The animal model bearing pulmonary metastatic osteosarcoma was injected with 177Lu-NODAGA-RGD2 at 7 weeks after model establishment to observe the therapeutic effect of pulmonary metastatic osteosarcoma. Histological and immunohistochemistry examinations were also done to confirm the establishment of animal model and integrin β3 expression in animal models bearing subcutaneous osteosarcoma and bearing pulmonary metastatic osteosarcoma. Results 68Ga-NODAGA-RGD2 and 177Lu-NODAGA-RGD2 had good stability in vitro with the 50% inhibitory concentration value of (5.0±1.1) and (6.5±0.8) nmol/L, respectively. The radiochemical purity of 68Ga-NODAGA-RGD2 at 1, 4, and 8 hours was 98.5%±0.3%, 98.3%±0.5%, and 97.9%±0.4%; while the radiochemical purity of 177Lu-NODAGA-RGD2 at 1, 7, and 14 days was 99.3%±0.7%, 98.7%±1.2%, and 96.0%±2.8%. 68Ga-NODAGA-RGD2 microPET-CT showed that the accumulation of 68Ga-NODAGA-RGD2 in animal models bearing subcutaneous osteosarcoma and osteosarcoma in tibia and in lung metastasis as small as 1-2 mm in diameter of animal model bearing pulmonary metastatic osteosarcoma. Biodistribution study of 68Ga-NODAGA-RGD2 in animal model bearing subcutaneous osteosarcoma revealed rapid clearance from blood with tumor peak uptake of (3.85±0.84) %ID/g at 120 minutes. The distribution of 177Lu-NODAGA-RGD2 in lung metastasis was similar with 68Ga-NODAGA-RGD2. The number and size of osteosarcoma metastasis decreased at 2 weeks after 177Lu-NODAGA-RGD2 administration and integrin targeting specificity was confirmed by pathology examination. Conclusion 68Ga-NODAGA-RGD2 was potential for positive imaging and early detection of osteosarcoma and metastasis. Targeted radiotherapy with 177Lu-NODAGA-RGD2 was one potential alternative for osteosarcoma lung metastasis.

关键词: 骨肉瘤; 肺转移; 整合素αvβ3; 靶向诊疗

Key words: Osteosarcoma; lung metastasis; Integrin αvβ3; targeted endotheranostics

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Xie L, Ji T, Guo W. Anti-angiogenesis target therapy for advanced osteosarcoma (Review). Oncol Rep, 2017, 38(2): 625-636.
2. Bielack SS, Hecker-Nolting S, Blattmann C, et al. Advances in the management of osteosarcoma.(2016-11-25).[2018-01-04] https://f1000research.com/articles/5-2767/v1.
3. Baczyk M, Czepczyński R, Milecki P, et al. 89Sr versus 153Sm-EDTMP: comparison of treatment efficacy of painful bone metastases in prostate and breast carcinoma. Nucl Med Commun, 2007, 28(4): 245-250.
4. Tome Y, Kimura H, Sugimoto N, et al. The disintegrin echistatin in combination with doxorubicin targets high-metastatic human osteosarcoma overexpressing ανβ3 integrin in chick embryo and nude mouse models. Oncotarget, 2016, 7(52): 87031-87036.
5. Sprague JE, Kitaura H, Zou W, et al. Noninvasive imaging of osteoclasts in parathyroid hormone-induced osteolysis using a 64culabeled rgd peptide. J Nucl Med, 2007, 48(2): 311-318.
6. Shi J, Zhou Y, Chakraborty S, et al. Evaluation of in-labeled cyclic RGD peptides: effects of peptide and linker multiplicity on their tumor uptake, excretion kinetics and metabolic stability. Theranostics, 2011, 1: 322-340.
7. Dijkgraaf I, Yim CB, Franssen GM, et al. PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di- and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging, 2011, 38(1): 128-137.
8. Auzzas L, Zanardi F, Battistini L, et al. Targeting alphavbeta3 integrin: design and applications of mono- and multifunctional RGD-based peptides and semipeptides. Curr Med Chem, 2010, 17(13): 1255-1299.
9. Zhao ZQ, Yang Y, Fang W, et al. Comparison of biological properties of 99mTc-labeled cyclic RGD Peptide trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol, 2016, 43(11): 661-669.
10. 杨晓, 李思, 向尚, 等. RNA干扰降低唾液酸酶3表达对骨肉瘤MG-63细胞增殖和凋亡影响的实验研究. 中国修复重建外科杂志, 2018, 32(7): 887-892.
11. 吴凡, 方向, 郎志刚, 等. 人工全股骨置换术治疗股骨恶性肿瘤. 中国修复重建外科杂志, 2019, 33(1): 18-22.
12. Zhao K, Yang SY, Geng J, et al. Combination of anginex gene therapy and radiation decelerates the growth and pulmonary metastasis of human osteosarcoma xenografts. Cancer Med, 2018, 7(6): 2518-2529.
13. Zhang Y, Zvi YS, Batko B, et al. Down-regulation of Skp2 expression inhibits invasion and lung metastasis in osteosarcoma. Sci Rep, 2018, 8(1): 14294.
14. Fang Z, Sun Y, Xiao H, et al. Targeted osteosarcoma chemotherapy using RGD peptide-installed doxorubicin-loaded biodegradable polymeric micelle. Biomed Pharmacother, 2017, 85: 160-168.
15. Chang R, Sun L, Webster TJ, et al. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres. Int J Nanomedicine, 2015, 10: 3351-3365.
16. Bhang HE, Gabrielson KL, Laterra J, et al. Tumor-specific imaging through progression elevated gene-3 promoter-driven gene expression. Nat Med, 2011, 17(1): 123-129.
17. Shokri B, Zarghi A, Shahhoseini S, et al. Design, synthesis and biological evaluation of ketoprofen conjugated to RGD/NGR for targeted cancer therapy. Iran J Pharm Res, 2018, 17(4): 1297-1305.
18. Cheng Y, Ji Y. RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. Eur J Pharm Sci, 2018, 128: 8-17.
19. Kumar C, Korde A, Kumari KV, et al. Cellular toxicity and apoptosis studies in osteocarcinoma cells, a comparison of 177Lu-EDTMP and Lu-EDTMP. Curr Radiopharm, 2013, 6(3): 146-151.
20. Karimi Ghodoosi E, D’Alessandria C, Li Y, et al. The effect of attenuation map, scatter energy window width, and volume of interest on the calibration factor calculation in quantitative 177Lu SPECT imaging: Simulation and phantom study. Phys Med, 2018, 56: 74-80.
21. Hippeläinen E, Tenhunen M, Mäenpää H, et al. Quantitative accuracy of 177Lu SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res, 2016, 6(1): 16.