中国修复重建外科杂志

中国修复重建外科杂志

用于周围神经再生的纤维基导电型复合支架制备及性能研究

查看全文

目的探讨一种“壳-芯”结构的聚吡咯/丝素蛋白(polypyrrole/silk fibroin,PPy/SF)纤维基导电型复合支架的制备方法、理化性能与生物相容性,为其用于组织工程神经研究奠定基础。方法采用 3D 打印结合原位聚合反应制备“壳-芯”结构导电纤维,联合静电纺形成 PPy/SF 纤维基导电型复合支架;另制备无 SF 内芯的 PPy 导电纤维及 SF 静电纺纤维。分别对各材料进行稳定性、生物力学、导电性、降解性能、生物活性检测,观察纤维基导电型复合支架的综合性能。结果与单纯无内芯的 PPy 导电纤维及 SF 静电纺纤维比较,“壳-芯”结构的纤维基导电型复合支架可以更好地保持稳定性能,增强复合支架的力学拉伸性,电导性维持长久,提升抗降解性能;同时 PPy/SF 纤维基导电型复合支架适合 NIH3T3 细胞附着,有利于细胞增殖,生物活性良好。结论PPy/SF 纤维基导电型复合支架满足人工神经移植物在导电性、稳定性、生物活性等方面的要求,为研制高性能、多功能的复合材料提供了新思路。

ObjectiveTo explore the preparation method, physical and chemical properties, and biocompatibility of a conductive composite scaffold based on polypyrrole/silk fibroin (PPy/SF) fiber with " shell-core” structure, and to provide a preliminary research basis for the application in the field of tissue engineered neuroscience.MethodsThe conductive fibers with " shell-core” structure were prepared by three-dimensional printing combined with in-situ polymerization. PPy/SF fiber-based conductive composite scaffolds were formed by electrospinning. In addition, core-free PPy conductive fibers and SF electrospinning fibers were prepared. The stability, biomechanics, electrical conductivity, degradation performance, and biological activity of each material were tested to analyze the comprehensive properties of fiber-based conductive composite scaffolds.ResultsCompared with pure core-free PPy conductive fibers and SF electrospinning fibers, the PPy/SF fiber-based conductive composite scaffolds with " shell-core” structure could better maintain the stability performance, enhance the mechanical stretchability of the composite scaffolds, maintain long-term electrical activity, and improve the anti-degradation performance. At the same time, PPy/SF conductive composite scaffolds were suitable for NIH3T3 cells attachment, conducive to cell proliferation, and had good biological activity.ConclusionPPy/SF fiber-based conductive composite scaffolds meet the needs of conductivity, stability, and biological activity of artificial nerve grafts, and provide a new idea for the development of a new generation of high-performance and multi-functional composite materials.

关键词: 组织工程; 周围神经; 导电型; 导向性; 生物活性; 支架材料

Key words: Tissue engineering; peripheral nerve; conductive; orientation; bioactivity; scaffold material

引用本文: 戴伍飞, 石嘉琪, 刘莎, 徐梓淇, 石逸瑾, 赵亚红, 杨宇民. 用于周围神经再生的纤维基导电型复合支架制备及性能研究. 中国修复重建外科杂志, 2019, 33(3): 356-362. doi: 10.7507/1002-1892.201808004 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Belanger K, Dinis TM, Taourirt S, et al. Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromol Biosci, 2016, 16(4): 472-481.
2. Kim JK, Koh YD, Kim JO, et al. Development of a decellularization method to produce nerve allografts using less invasive detergents and hyper/hypotonic solutions. J Plast Reconstr Aesthetic Surg, 2016, 69(12): 1690-1696.
3. Boriani F, Fazio N, Fotia C, et al. A novel technique for decellularization of allogenic nerves and in vivostudy of their use for peripheral nerve reconstruction. J Biomed Mater Res A, 2017, 105(8): 2228-2240.
4. Kaiser R, Ullas G, Havránek P, et al. Current concepts in peripheral nerve injury repair. Acta Chir Plast, 2017, 59(2): 85-91.
5. Anderson M, Shelke NB, Manoukian OS, et al. Peripheral nerve regeneration strategies: electrically stimulating polymer based nerve growth conduits. Crit Rev Biomed Eng, 2015, 43(2-3): 131-159.
6. 尹刚, 刘蔡钺, 林耀发, 等. 脂肪干细胞来源外泌体对周围神经损伤后再生作用的实验研究. 中国修复重建外科杂志, 2018, 32(12): 1592-1596.
7. Xue C, Zhu H, Tan D, et al. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. J Tissue Eng Regen Med, 2018, 12(2): e1143-e1153.
8. Ateh DD, Navsaria HA, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface, 2006, 3(11): 741-752.
9. Lee JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 2009, 30(26): 4325-4335.
10. Bandala C, Terán-Melo JL, Anaya-Ruiz M, et al. Effect of botulinum neurotoxin type A (BoNTA) on the morphology and viability of 3T3 murine fibroblasts. Int J Clin Exp Pathol, 2015, 8(8): 9458-9462.
11. Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 2014, 35(24): 6143-6156.
12. Lutkenhaus J. A radical advance for conducting polymers. Science, 2018, 359(6382): 1334-1335.
13. Baniasadi H, Ramazani SAA, Mashayekhan S. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol, 2015, 74: 360-366.
14. Liao J, Zhu Y, Yin Z, et al. Tuning nano-architectures and improving bioactivity of conducting polypyrrole coating on bone implants by incorporating bone-borne small molecules. J Mater Chem B, 2014, 2014(2): 7872-7876.
15. Wang C, Jia Y, Yang W, et al. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits. J Biomed Mater Res A, 2018, 106(7): 2070-2077.
16. Jacobsen MM, Li D, Rim NG, et al. Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue. Sci Rep, 2017, 7: 45653.
17. Liao J, Zhu Y, Yin Z, et al. Tuning nano-architectures and improving bioactivity of conducting polypyrrole coating on bone implants by incorporating bone-borne small molecules. J Mater Chem B, 2014, 2014(2): 7872-7876.
18. Bhattacharjee P, Kundu B, Naskar D, et al. Potential of inherent RGD containing silk fibroin-poly (capital JE, Ukrainian-caprolactone) nanofibrous matrix for bone tissue engineering. Cell Tissue Res, 2016, 363(2): 525-540.
19. Zhang L, Liu X, Li G, et al. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. J Biomed Mater Res A, 2019, 107(1): 104-113.
20. 焦海山, 曹萍, 陈颖, 等. 纳米聚吡咯/甲壳素复合膜的制备及其生物相容性观察. 中国修复重建外科杂志, 2018, 32(8): 1081-1087.
21. Poggetti A, Battistini P, Parchi PD, et al. How to direct the neuronal growth process in peripheral nerve regeneration: future strategies for nanosurfaces scaffold and magnetic nanoparticles. Surg Technol Int, 2017, 30: 458-461.
22. Poggetti A, Battistini P, Paolo PD. Nanosurfaces scaffold and magnetic nanoparticles to direct the neuronal growth process: future strategies for peripheral nerve regeneration. J Orthop Case Rep, 2016, 6(1): 3-4.
23. Leigh BL, Truong K, Bartholomew R, et al. Tuning surface and topographical features to investigate competitive guidance of spiral ganglion neurons. ACS Appl Mater Interfaces, 2017, 9(37): 31488-31496.
24. Li S, Kuddannaya S, Chuah YJ, et al. Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. Biomater Sci, 2017, 5(10): 2056-2067.