中国修复重建外科杂志

中国修复重建外科杂志

纳米羟基磷灰石/聚酰胺 66 椎间融合器用于腰椎退变性侧凸椎间融合的疗效

查看全文

目的探讨纳米羟基磷灰石/聚酰胺 66 椎间融合器(nano-hydroxyapatite/polyamide-66 Cage,n-HA/PA66 Cage)用于腰椎退变性侧凸椎间融合的疗效。方法回顾性分析 2013 年 1 月—2016 年 6 月,采用 n-HA/PA66 Cage 行后路侧凸矫形、椎间植骨融合内固定术治疗并获完整随访的 43 例腰椎退变性侧凸患者临床资料,其中单节段融合 18 例(单节段组)和双节段融合 25 例(双节段组)。两组患者性别、年龄、体质量指数、侧凸方向、顶椎旋转度、融合节段、骨质疏松例数以及术前融合节段椎间隙高度、冠状面 Cobb 角、腰腿痛疼痛视觉模拟评分(VAS)以及改良 Oswestry 功能障碍指数(ODI)等一般资料比较,差异均无统计学意义(P>0.05)。记录患者手术时间、术中出血量、术后引流量、住院时间以及术后并发症发生情况;采用改良 ODI、VAS 评分、MacNab 标准进行临床疗效评价;影像学检测融合节段椎间隙高度、冠状面 Cobb 角、Cage 植入深度、植骨融合情况等。结果两组手术时间、术中出血量、术后引流量及住院时间比较,差异无统计学意义(P>0.05)。所有患者均获随访,随访时间 18~62 个月,平均 30.9 个月。术后 4 例发生切口相关并发症(单节段组 2 例、双节段组 2 例),单节段组 1 例出现谵妄, 双节段组 1 例发生 Cage 移位。两组术后融合节段椎间隙高度均较术前明显改善(P<0.05),末次随访时双节段组椎间隙高度高于单节段组(P<0.05)。两组术后冠状面 Cobb 角均较术前明显矫正(P<0.05),术后各时间点两组间比较差异均无统计学意义(P>0.05)。两组术后 3 d、6 个月及末次随访时 Cage 植入深度比较,差异均无统计学意义(P>0.05);各时间点组间比较差异亦无统计学意义(P>0.05)。末次随访时,两组患者均达骨性融合。两组术后 VAS 评分、改良 ODI 均较术前改善(P<0.05);末次随访时双节段组 VAS 评分高于单节段组,差异有统计学意义(P<0.05);其余各时间点 VAS 评分、改良 ODI 组间比较差异无统计学意义(P>0.05)。末次随访时,按照腰椎功能 MacNab 标准,单节段组优良率为 94.4%、双节段组为 84.0%,差异无统计学意义(P>0.05)。结论采用 n-HA/PA66 椎间融合器可有效恢复、维持腰椎退变性侧凸患者的融合节段椎间隙高度、重建脊柱稳定性,获得较好疗效。其中,双节段患者椎间隙高度维持优于单节段患者。

ObjectiveTo explore the effectiveness of nano-hydroxyapatite/polyamide-66 (n-HA/PA66) Cage in interbody fusion for degenerative lumbar scoliosis.MethodsA retrospective analysis was designed and conducted for 43 patients, who underwent posterior decompression and n-HA/PA66 Cage interbody fusion with correction of deformity between January 2013 and June 2016. Eighteen cases were single-level fusion (single-level group) and 25 cases were double-level fusion (double-level group). There was no significant difference in gender, age, body mass index, direction of convex, degree of apical rotation, fusion level, the number of osteoporotic patients, pre-operative intervertebral height of fusion segments, coronal Cobb angle, visual analogue score (VAS), and modified Oswestry Disability Index (ODI) between 2 groups (P>0.05). The operation time, intraoperative blood loss, postoperative drainage, hospital stay, and complications of the operation were recorded. Modified ODI, VAS score, and MacNab criteria were adopted to assess clinical outcomes. Radiographic indexes, including intervertebral height of fusion segments, coronal Cobb angle, disc insertion depth, and the bone graft fusion rate, were also evaluated.ResultsThere was no significant difference in operation time, intraoperative blood loss, postoperative drainage, and hospital stay between 2 groups (P>0.05). All patients were followed up 18-62 months (mean, 30.9 months). Wound complications, postoperative delirium, and Cage retropulsion occurred in 4 cases (2 cases in single-level group, 2 cases in double-level group), 1 case of single-level group, and 1 case of double-level group, respectively. The intervertebral height of fusion segments after operation significantly improved compared with preoperative ones in both groups (P<0.05). At last follow-up, the intervertebral height in double-level group was superior to which in single-level group (P<0.05). The coronal Cobb angles after operation significantly improved compared with preoperative ones (P<0.05), and no significant difference was found between 2 groups at each time point (P>0.05). The disc insertion depth showed no significant difference between different time points after operation in 2 groups (P>0.05) and between 2 groups at each time point after operation (P>0.05). Bony fusion was obtained in all patients at last follow-up. The VAS score and modified ODI after operation in both groups were superior to those before operation (P<0.05). The VAS score in double-level group was higher than that in single-level group (P<0.05) at last follow-up, and no significant difference was found in VAS score and modified ODI between 2 groups at other time points (P>0.05). According to the MacNab criteria, the excellent and good rates at last follow-up were 94.4% and 84.0% in single-level group and double-level group, respectively.ConclusionThe n-HA/PA66 Cage can effectively restore and maintain the disc height of fusion segment, normal sequence, and biomechanical stability of the spine, and gain favorable effectivenss for degenerative lumbar scoliosis. And double-level fusion is superior to single-level fusion in maintaining disc height of fusion segment.

关键词: 腰椎退变性侧凸; 椎间融合; 纳米羟基磷灰石; 聚酰胺 66; 椎间融合器

Key words: Degenerative lumbar scoliosis; interbody fusion; nano-hydroxyapatite; polyamide-66; Cage

引用本文: 胡鉴瑜, 欧云生, 朱勇, 罗伟, 赵增辉, 杜兴, 李剑萧. 纳米羟基磷灰石/聚酰胺 66 椎间融合器用于腰椎退变性侧凸椎间融合的疗效. 中国修复重建外科杂志, 2019, 33(3): 287-295. doi: 10.7507/1002-1892.201807060 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. York PJ, Kim HJ. Degenerative scoliosis. Curr Rev Musculoskelet Med, 2017, 10(4): 547-558.
2. Tsutsui S, Yoshimura N, Watanuki A, et al. Risk factors and natural history of de novo degenerative lumbar scoliosis in a community-based cohort: the miyama study. Spine Deform, 2013, 1(4): 287-292.
3. Swamy G, Lopatina E, Thomas KC, et al. The cost effectiveness of minimally invasive spine surgery in the treatment of adult degenerative scoliosis: A comparison of transpsoas and open techniques. Spine J, 2019, 19(2): 339-348.
4. Brantigan JW, Steffee AD. A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine (Phila Pa 1976), 1993, 18(14): 2106-2107.
5. Ailon T, Smith JS, Shaffrey CI, et al. Degenerative spinal deformity. Neurosurgery, 2015, 77(Suppl 4): S75-S91.
6. Cho KJ, Kim YT, Shin SH, et al. Surgical treatment of adult degenerative scoliosis. Asian Spine J, 2014, 8(3): 371-381.
7. 张志成, 任大江, 孙天胜, 等. 退变性腰椎侧凸合并椎管狭窄的阶梯性治疗策略. 中国修复重建外科杂志, 2011, 25(8): 951-955.
8. Kuslich SD, Bagby G. The BAK interbody fusion system: early clinical results of treatment for chronic low back pain. The 8th Annual Meeting of the North American Spine Society. San Diego: [s.n], 1993.
9. 王松, 杨函, 杨剑, 等. 多孔磷酸钙/骨基质明胶复合骨水泥修复兔腰椎骨缺损的实验研究. 中国修复重建外科杂志, 2017, 31(12): 1462-1467.
10. Seaman S, Kerezoudis P, Bydon M, et al. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci, 2017, 44: 23-29.
11. 郜德龙, 方忠, 孙允龙, 等. 同种异体骨 Cage 在经椎间孔腰椎椎间融合手术中的应用. 中国修复重建外科杂志, 2018, 32(7): 927-932.
12. 赵勃然, 郑修军, 马金荣. 椎间融合器及其材料的研究与进展. 中国组织工程研究, 2017, 21(2): 315-321.
13. Xiong Y, Ren C, Zhang B, et al. Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects. Int J Nanomedicine, 2014, 9: 485-494.
14. 温从游, 孟纯阳, 蒋电明. 纳米羟基磷灰石/聚酰胺 66 复合材料的研究及应用. 中国组织工程研究, 2014, 18(3): 464-469.
15. 杨曦, 宋跃明, 孔清泉, 等. 纳米羟基磷灰石/聚酰胺 66 椎间融合器植骨融合治疗下腰椎退变性疾病的近期疗效. 中国修复重建外科杂志, 2012, 26(12): 1425-1429.
16. 邓乾兴, 欧云生, 蒋电明, 等. n-HA/PA66 椎间融合器在颈椎病前路椎间盘切除减压融合术的中期临床疗效. 重庆医科大学学报, 2016, 41(5): 489-494.
17. Deng QX, Ou YS, Zhu Y, et al. Clinical outcomes of two types of cages used in transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases: n-HA/PA66 cages versus PEEK cages. J Mater Sci Mater Med, 2016, 27(6): 102.
18. Cinotti G, De Santis P, Nofroni I, et al. Stenosis of lumbar intervertebral foramen: anatomic study on predisposing factors. Spine (Phila Pa 1976), 2002, 27(3): 223-229.
19. Hueng DY, Chung TT, Chuang WH, et al. Biomechanical effects of cage positions and facet fixation on initial stability of the anterior lumbar interbody fusion motion segment. Spine (Phila Pa 1976), 2014, 39(13): E770-E776.
20. Kurra S, Lavelle WF, Silverstein MP, et al. Long-term outcomes of transforaminal lumbar interbody fusion in patients with spinal stenosis and degenerative scoliosis. Spine J, 2018, 18(6): 1014-1021.
21. Landham PR, Don AS, Robertson PA. Do position and size matter? An analysis of cage and placement variables for optimum lordosis in PLIF reconstruction. Eur Spine J, 2017, 26(11): 2843-2850.
22. 邓乾兴, 欧云生, 朱勇, 等. 经椎间孔单节段腰椎椎间融合术后融合器下沉的危险因素分析. 中华骨科杂志, 2018, 38(3): 156-163.
23. Aoki Y, Yamagata M, Nakajima F, et al. Examining risk factors for posterior migration of fusion cages following transforaminal lumbar interbody fusion: a possible limitation of unilateral pedicle screw fixation. J Neurosurg Spine, 2010, 13(3): 381-387.
24. Khajavi K, Shen AY. Two-year radiographic and clinical outcomes of a minimally invasive, lateral, transpsoas approach for anterior lumbar interbody fusion in the treatment of adult degenerative scoliosis. Eur Spine J, 2014, 23(6): 1215-1223.
25. 孟纯阳, 安洪, 蒋电明. 新型纳米骨关节修复重建材料的生物活性及近期对机体钙磷代谢的影响. 中国骨与关节损伤杂志, 2005, 20(10): 682-684.
26. Pan FM, Wang SJ, Yong ZY, et al. Risk factors for cage retropulsion after lumbar interbody fusion surgery: Series of cases and literature review. Int J Surg, 2016, 30: 56-62.
27. 马龙冰, 贾云兵, 宋跃明, 等. 聚氨基酸/纳米羟基磷灰石/硫酸钙椎间融合器在腰椎融合术中的初步应用. 中国修复重建外科杂志, 2016, 30(3): 328-335.
28. Abbushi A, Cabraja M, Thomale UW, et al. The influence of cage positioning and cage type on cage migration and fusion rates in patients with monosegmental posterior lumbar interbody fusion and posterior fixation. Eur Spine J, 2009, 18(11): 1621-1628.
29. Wang L, Zhang B, Chen S, et al. A validated finite element analysis of facet joint stress in degenerative lumbar scoliosis. World Neurosurg, 2016, 95: 126-133.
30. Zhang XN, Sun XY, Meng XL, et al. Risk factors for medical complications after long-level internal fixation in the treatment of adult degenerative scoliosis. Int Orthop, 2018, 42(11): 2603-2612.