中国修复重建外科杂志

中国修复重建外科杂志

腰椎峡部裂滑脱相邻节段三维瞬时运动特征的在体研究

查看全文

目的 探讨有临床症状的腰椎峡部裂滑脱(isthmic spondylolisthesis,IS)患者生理载荷下相邻节段三维瞬时运动特征。 方法 选取有临床症状需手术治疗的 L4 IS 患者 14 例为研究组;以 15 名无腰痛症状和脊柱疾病的健康志愿者为对照组。两组受试者性别、年龄、体质量指数、骨密度比较,差异均无统计学意义(P>0.05),具有可比性。采用双 X 线透视影像系统和螺旋 CT 检查结合技术,从受试者腰椎薄层 CT 获取腰椎三维重建模型,匹配到由双 X 线透视影像系统捕获的不同活动体位时腰椎双斜位 X 线透视图像上,重现生理载荷下不同活动体位腰椎滑脱节段三维瞬时运动状态。通过在椎体几何中心建立三维坐标系测量相邻节段(L3、 4 和 L5、S1)椎体间的活动度和相对位移,并与对照组比较。 结果 对照组 L3、 4 在前屈-后伸、左旋-右旋和左侧弯-右侧弯时,L5、S1 在左旋-右旋和左侧弯-右侧弯时,沿主要运动轴(主运动轴)的活动度均较相应耦合运动轴(次运动轴)活动度有增大趋势;但研究组这种趋势消失,主次运动紊乱。L5、S1 由于椎间小关节方向偏冠状位,前屈-后伸时沿主要运动轴活动度较相应耦合运动轴活动度变小;但研究组这种趋势消失。与对照组相比,研究组 L3、 4 在前屈-后伸、左侧弯-右侧弯和左旋-右旋时存在位移失稳(P<0.05);研究组 L5、S1 椎体间在前屈-后伸、左旋-右旋和左侧弯-右侧弯时沿 x、y、z 轴的相对位移与对照组比较,差异均无统计学意义(P>0.05)。 结论 有临床症状的 L4 IS 患者相邻节段主次运动模式紊乱,且相邻头侧椎间运动存在位移失稳,而尾侧椎间运动趋于稳定。

Objective To observe vertebral three-dimensional motion characteristics of adjacent segments in patients with symptomatic L4 isthmic spondylolisthesis (IS). Methods Fourteen symptomatic L4 IS patients who underwent surgery treatment (trial group) and 15 asymptomatic volunteers without back pain and other lesions of spine (control group) were recruited. There was no significant difference in gender, age, body mass index, and bone mineral density between the two groups (P>0.05). The three-dimensional reconstruction model of lumbar spine was acquired from the thin slice CT of the lumbar spine of the subjects by combining dual-X-ray fluoroscopy imaging system with spiral CT examination. The model was matched to the double oblique X-ray fluoroscopy images captured by dual-X-ray fluoroscopy imaging system at different active positions of the lumbar spine to reproduce the three-dimensional instantaneous of lumbar spondylolisthesis at different state of motion. The motion and relative displacement of adjacent segments (L3, 4 and L5, S1) of spondylolisthesis were measured quantitatively by establishing a three-dimensional coordinate system at the geometric center of the vertebral body. The results were compared with those of the control group. Results When L3, 4 in the control group were flexed flexion-extension, left-right twisting, and left-right bending, and when L5, S1 in the control group were flexed left-right twisting and left-right bending, the activity along the main axis of motion (main axis of motion) tended to increase compared with that along the corresponding coupled axis of motion (secondary axis of motion); however, this trend disappeared in the trial group, and the main and secondary movements were disordered. Because of the coronal orientation of the facet joints of L5, S1, the degree of motion along the main axis of motion decreased during flexion and extension, but this trend disappeared in the trial group. Compared with the control group, L3, 4 in the trial group exhibited displacement instability in flexion-extension, left-right twisting, and left-right bending (P<0.05); there was no significant difference in the relative displacement of L5, S1 intervertebral bodies along x, y, and z axes between the trial group and the control group in flexion-extension, left-right twisting, and left-right bending curvature (P>0.05). Conclusion Patients with symptomatic L4 IS have disorders of primary and secondary movement patterns in adjacent segments, while IS showed significantly displacement instability in L3, 4 and significantly decreased motion in L5, S1.

关键词: 腰椎; 峡部裂滑脱; 运动学; 脊柱手术

Key words: Lumbar spine; isthmic spondylolisthesis; kinematics; spinal surgery

引用本文: 胥鸿达, 刘佳男, 李宏达, 魏冬, 苗军, 夏群. 腰椎峡部裂滑脱相邻节段三维瞬时运动特征的在体研究. 中国修复重建外科杂志, 2018, 32(12): 1560-1566. doi: 10.7507/1002-1892.201807026 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Noorian S, Sorensen K, Cho W. A systematic review of clinical outcomes in surgical treatment of adult isthmic spondylolisthesis. Spine J, 2018, 18(8): 1441-1454.
2. Gandhoke GS, Tempel ZJ, Bonfield CM, et al. Technical nuances of the minimally invasive extreme lateral approach to treat thoracolumbar burst fractures. Eur Spine J, 2015, 24(Suppl 3): 353-360.
3. Grobler LJ, Novotny JE, Wilder DG, et al. L4-5 isthmic spondylolisthesis. A biomechanical analysis comparing stability in L4-5 and L5-S1 isthmic spondylolisthesis. Spine (Phila Pa 1976), 1994, 19(2): 222-227.
4. Oh JY, Liang S, Louange D, et al. Paradoxical motion in L5-S1 adult spondylolytic spondylolisthesis. Eur Spine J, 2012, 21(2): 262-267.
5. Niggemann P, Kuchta J, Beyer HK, et al. Spondylolysis and spondylolisthesis: prevalence of different forms of instability and clinical implications. Spine (Phila Pa 1976), 2011, 36(22): E1463-1468.
6. 夏群, 胥鸿达, 苗军, 等. 生理载荷下腰椎峡部裂滑脱与退变滑脱的三维瞬时运动特征. 中华骨科杂志, 2014, 34(12): 1244-1251.
7. Pinheiro-Franco J L, Roussouly P. The importance of sagittal balance for the treatment of lumbar degenerative disk disease. Berlin Heidelberg: Springer, 2016: 703-724.
8. Mihara H, Onari K, Cheng BC, et al. The biomechanical effects of spondylolysis and its treatment. Spine (Phila Pa 1976), 2003, 28(3): 235-238.
9. Chen L, Feng Y, Che CQ, et al. Influence of sacral slope on the loading of pedicle screws in postoperative L5/S1 isthmic spondylolisthesis patient: a finite element analysis. Spine (Phila Pa 1976), 2016, 41(23): E1388-E1393.
10. Pearcy M, Shepherd J. Is there instability in spondylolisthesis. Spine (Phila Pa 1976), 1985, 10(2): 175-177.
11. McGregor AH, Anderton L, Gedroyc WM, et al. The use of interventional open MRI to assess the kinematics of the lumbar spine in patients with spondylolisthesis. Spine (Phila Pa 1976), 2002, 27(14): 1582-1586.
12. Cha TD, Moore G, Liow MH, et al. In vivo characteristics of non-degenerated adjacent segment intervertebral foramina in patients with degenerative disc disease during flexion-extension. Spine (Phila Pa 1976), 2017, 42(6): 359-365.
13. Miao J, Wang S, Wan Z, et al. Motion characteristics of the vertebral segments with lumbar degenerative spondylolisthesis in elderly patients. Eur Spine J, 2013, 22(2): 425-431.
14. Xia Q, Wang S, Kozanek M, et al. In-vivo motion characteristics of lumbar vertebrae in sagittal and transverse planes. J Biomech, 2010, 43(10): 1905-1909.
15. 王博韬, 夏群, 苗军, 等. 应用数字骨科技术观测腰椎失稳节段间在体三维运动特点. 中华医学杂志, 2014, 94(29): 2264-2268.
16. 李宏达, 夏群, 白剑强, 等. 健康成人下颈椎在体三维瞬时运动特点研究. 中国修复重建外科杂志, 2015, 29(12): 1494-1499.
17. Kim R, Singla A, Samdani AF. Classification of Spondylolisthesis//Richard Kim. Spondylolisthesis. US: Springer, 2015: 95-106.
18. Legaspi O, Edmond SL. Does the evidence support the existence of lumbar spine coupled motion? A critical review of the literature J Orthop Sports Phys Ther, 2007, 37(4): 169-178.
19. Panjabi MM, Krag MH, White AA 3rd, et al. Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am, 1977, 8(1): 181-192.
20. Pearcy MJ. Stereo radiography of lumbar spine motion. Acta Orthop Scand Suppl, 1985, 212: 1-45.
21. Shin JH, Wang S, Yao Q, et al. Investigation of coupled bending of the lumbar spine during dynamic axial rotation of the body. Eur Spine J, 2013, 22(12): 2671-2677.
22. Toyone T, Ozawa T, Kamikawa K, et al. Facet joint orientation difference between cephalad and caudad portions: a possible cause of degenerative spondylolisthesis. Spine (Phila Pa 1976), 2009, 34(21): 2259-2262.
23. Ehara S, Shimamura T. Paradoxical motion in spondylolisthesis due to two-segment instability. Arch Orthop Trauma Surg, 1997, 116(6-7): 435-436.
24. Szypryt EP, Twining P, Mulholland RC, et al. The prevalence of disc degeneration associated with neural arch defects of the lumbar spine assessed by magnetic resonance imaging. Spine (Phila Pa 1976), 1989, 14(9): 977-981.
25. Abumi K, Panjabi MM, Kramer KM, et al. Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine (Phila Pa 1976), 1990, 15(11): 1142-1147.
26. Goel VK, Goyal S, Clark C, et al. Kinematics of the whole lumbar spine. Effect of discectomy. Spine (Phila Pa 1976), 1985, 10(6): 543-554.
27. Vialle R, Ilharreborde B, Dauzac C, et al. Is there a sagittal imbalance of the spine in isthmic spondylolisthesis? A correlation study Eur Spine J, 2007, 16(10): 1641-1649.
28. Lamartina C, Berjano P. Classification of sagittal imbalance based on spinal alignment and compensatory mechanisms. Eur Spine J, 2014, 23(6): 1177-1189.
29. Henson J, McCall IW, O’Brien JP. Disc damage above a spondylolisthesis. Br J Radiol, 1987, 60(709): 69-72.
30. Been E, Li L, Hunter DJ, et al. Geometry of the vertebral bodies and the intervertebral discs in lumbar segments adjacent to spondylolysis and spondylolisthesis: pilot study. Eur Spine J, 2011, 20(7): 1159-1165.
31. Morishita Y, Ohta H, Naito M, et al. Kinematic evaluation of the adjacent segments after lumbar instrumented surgery: a comparison between rigid fusion and dynamic non-fusion stabilization. Eur Spine J, 2011, 20(9): 1480-1485.
32. Jeong HY, You JW, Sohn HM, et al. Radiologic evaluation of degeneration in isthmic and degenerative spondylolisthesis. Asian Spine J, 2013, 7(1): 25-33.
33. Phan KH, Daubs MD, Kupperman AI, et al. Kinematic analysis of diseased and adjacent segments in degenerative lumbar spondylolisthesis. Spine J, 2015, 15(2): 230-237.
34. Takayanagi K, Takahashi K, Yamagata M, et al. Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine (Phila Pa 1976), 2001, 26(17): 1858-1865.
35. Don AS, Robertson PA. Facet joint orientation in spondylolysis and isthmic spondylolisthesis. J Spinal Disord Tech, 2008, 21(2): 112-115.
36. Chen IR, Wei TS. Disc height and lumbar index as independent predictors of degenerative spondylolisthesis in middle-aged women with low back pain. Spine (Phila Pa 1976), 2009, 34(13): 1402-1409.
37. Lee SH, Daffner SD, Wang JC, et al. The change of whole lumbar segmental motion according to the mobility of degenerated disc in the lower lumbar spine: a kinetic MRI study. Eur Spine J, 2015, 24(9): 1893-1900.
38. 胥鸿达, 夏群, 苗军. 腰椎退变滑脱对相邻节段在体运动的影响. 中华医学杂志, 2014, 94(47): 3731-3734.