中国修复重建外科杂志

中国修复重建外科杂志

表皮葡萄球菌附属基因调节子 C 特异结合多肽对聚氯乙烯材料表面细菌生物膜形成作用的体外研究

查看全文

目的 探讨表皮葡萄球菌附属基因调节子 C(accessory gene regulator C,agr C)特异结合多肽(简称为 N1)对聚氯乙烯(polyvinyl chloride,PVC)材料表面表皮葡萄球菌生物膜形成作用的体外研究。 方法 以表皮葡萄球菌 ATCC35984(生物膜表型阳性)和 ATCC12228(生物膜表型阴性)作为研究对象。首先将两菌株分别加入浓度为 100、200、400、800、1 600 μg/mL 的 N1 培养,以相同浓度 agrC 特异结合无关肽(简称为 N0)培养作为对照;24 h 后测定吸光度(A)值,确定 N1 最佳抑菌浓度。两菌株与最佳抑菌浓度的 N1 及 N0 分别培养,6、12、18、24、30、48 h 测定 A 值,观察 N1 对表皮葡萄球菌生物膜形成能力的影响;在此基础上与 PVC 材料片培养 6、12、18、24、30 h,扫描电镜观察 PVC 材料表面生物膜的表面结构;另取与 ATCC35984 菌株培养 6、12、18、24 h 的 PVC 材料片,激光共聚焦显微镜观察生物膜厚度。 结果 A 值测定显示,N1 对 ATCC35984 菌株最佳抑菌浓度为 800 μg/mL。ATCC12228 菌株与 N1 及 N0 培养后均未形成明显生物膜;ATCC35984 菌株与 N1 及 N0 培养 12 h 时,生物膜形成能力差异有统计学意义(P<0.05),6、18、24、30、48 h 时差异无统计学意义(P>0.05)。扫描电镜观察,ATCC35984 菌株与 N1 及 N0 培养后,随时间延长均见成熟生物膜结构;而 ATCC12228 菌株培养后均未见生物膜形成。激光共聚焦显微镜观察,ATCC35984 菌株与 N1 培养 12 h 时细菌量明显少于与 N0 培养,且以死细菌居多;6、18、24 h 时两种培养条件下细菌数量未见明显差别,均以活细菌居多;同时,N1 培养 12、18 h 时生物膜厚度明显小于 N0 培养(P<0.05)。 结论 N1 抑制表皮葡萄球菌生物膜形成的强度有量效关系;其在聚集期阻碍细菌的增殖和聚集,抑制生物膜形成,对成熟生物膜抑制作用不明显。

Objective To investigate the effect of accessory gene regulator C (agr C) specific binding peptides (named N1) on the biofilm formation of Staphylococcus epidermidis on the surface of polyvinyl chloride (PVC) materials in vitro. Methods Firstly, the two strains (ATCC35984, ATCC12228) were cultured with N1 at concentrations of 100, 200, 400, 800, and 1 600 μg/mL, respectively. The control group was cultured with agrC specific binding unrelated peptides (named N0) at the same concentrations and the absorbance (A) value was measured after 24 hours to determine the optimal bacteriostatic concentration of N1. The two strains were cultured with N1 and N0 of the optimal concentration, respectively. The A values were measured at 6, 12, 18, 24, 30, and 48 hours to observe the effect of N1 on the biofilm formation ability of Staphylococcus epidermidis. On this basis, the surface structure of the biofilm on the surface of PVC material was observed by scanning electron microscopy after 6, 12, 18, 24, and 30 hours of incubation with PVC material sheet. The thickness of the biofilm was observed by laser confocal microscopy after 6, 12, 18, and 24 hours of incubation with ATCC35984 strain. Results The optimal bacteriostatic concentration of N1 was 800 μg/mL. ATCC 12228 strain did not form obvious biofilm after being cultured with N1 and N0. When ATCC35984 strain was cultured with N1 and N0 for 12 hours, the difference in biofilm formation ability between N1 and N0 groups was statistically significant (P<0.05), but there was no significant difference at 6, 18, 24, 30, and 48 hours (P>0.05). Scanning electron microscopy examination showed that mature biofilm structure was observed in ATCC35984 strain and was not observed in ATCC12228 strain. Laser confocal microscopy observation showed that the number of bacteria in the N1 group was significantly lower than that in the N0 group at 12 hours, and the most of bacteria were dead bacteria. There was no significant difference in the number of bacteria at 6, 18 and 24 hours, and the most of them were live bacteria. The biofilm thickness of N1 group was significantly lower than that of N0 group at 12 and 18 hours (P<0.05). Conclusion The intensity of N1 inhibiting the formation of Staphylococcus epidermidis biofilm is dose-dependent. During the aggregation period, N1 can inhibit the biofilm formation by hindering the bacterial growth and aggregation. The inhibition effect on mature biofilm is not obvious.

关键词: 表皮葡萄球菌; 细菌生物膜; 附属基因调节子 C; 特异结合多肽; 聚氯乙烯

Key words: Staphylococcus epidermis; bacterial biofilm; accessory gene regulator C; specific binding peptide; polyvinyl chloride

登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Juárez-Verdayes MA, Ramón-Peréz ML, Flores-Páez LA, et al. Staphylococcus epidennidis with the ieaA/icaD/IS256 genotype and protein or protein/extracellular-DNA biofilm is frequent in ocular infections. J Med Microbiol, 2013, 62(Pt10): 1579-1587.
2. Monk AB, Boundy S, Chu VH, et al. Analysis of the genotype and virulence of Staphylococcus epidermidis isolates from patients with infective endocarditis. Infect Immun, 2008, 76(11): 5127-5132.
3. Sharifinejad M, Shokatpour N, Farnaghi F, et al. Different genotypes of adhesion operon genes in Staphylococcus epidermidis isolates from various ocular infections. Eye Contact Lens, 2018, 44(Suppl 2): S277-S280.
4. Nguyen TH, Park MD, Otto M. Host response to Staphylococcus epidermidis colonization and infections. Front Cell Infect Microbiol, 2017, 7: 1-7.
5. Claessens J, Roriz M, Merckx R, et al. Inefficacy of vancomycin and teicoplanin in eradicating and killing Staphylococcus epidermidis biofilms in vitro. Int J Antimicrob Agents, 2015, 45(4): 368-375.
6. Zhou S, Chao X, Fei M, et al. Analysis of S.epidermidis icaA and icaD genes by polymerase chain reaction and slime production: a case control study. BMC Infect Dis, 2013, 13: 242.
7. Yang T, Tal-Gan Y, Paharik AE, et al. Structure-function analyses of a Staphylococcus epidermidis autoinducing peptide reveals motifs critical for AgrC-type receptor modulation. ACS Chem Biol, 2016, 11(7): 1982-1991.
8. 陈颖, 王小燕, 赵光强, 等. 聚氯乙烯材料表面白色念珠菌-表皮葡萄球菌混合生物膜结构观察. 中国修复重建外科杂志, 2015, 29(5): 609-614.
9. Mack D, Rohde H, Harris LG, et al. Biofilm formation in medical device-related infection. Int J Aritif Organs, 2006, 29(4): 343-359.
10. Sendi P, Zimmerli W. Antimicrobial treatment concepts for orthopaedic decive-related infection. Clin Microbiol Infect, 2012, 18(12): 1176-1184.
11. Chong YP, Kim ES, Park SJ. Accessory gene regulator (agr) dysfunction in Staphylococcus aureus bloodstream isolates from South Korean patients. Antimicrob Agents Chemother, 2013, 57(3): 1509-1512.
12. Paharik AE, Horswill AR. The Staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr, 2016, 4(2): 10.
13. Dai L, Yang L, Parsons C, et al. Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and "self-renewal" through down regulation of agr. BMC Microbiol, 2012, 12: 102.
14. 李学军. 金黄色葡萄球菌 argC 结合小肽的筛选及其功能研究. 重庆: 第三军医大学, 2009.
15. Tal-Gan Y, Stacy DM, Blackwell HE. N-Methyl and peptoid scans of an autoinducing peptide reveal new structural features required for inhibition and activation of AgrC quorum sensing receptors in Staphylococcus aureus. Chem Commun (Camb), 2014, 50(23): 3000-3003.
16. Büttner H, Mack D, Rohde H. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions. Front Cell Infect Microbiol, 2015, 5(14): 14.
17. Le KY, Dastgheyb S, Ho TV, et al. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol, 2014, 4: 167.
18. Singh R, Ray P. Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microbiol, 2014, 9(5): 669-681.
19. Laabei M, Jamieson WD, Massey RC, et al. Staphylococcus aureus interaction with phospholipid vesicles—a new method to accurately determine accessory gene regulator (agr) activity. PLoS One, 2014, 9(1): e87270.
20. 郭尚春, 赵丽萍, 陶诗聪, 等. 胞外囊泡在细菌致病机制中作用的研究进展. 中国修复重建外科杂志, 2018, 32(12): 1597-1604.
21. Pader V, James EH, Painter KL, et al. The Agr quorum-sensing system regulates fibronectin binding but not hemolysis in the absence of a functional electron transport chain. Infect Immun, 2014, 82(10): 4337-4347.