关键词: 骨组织工程; 墨鱼骨; 羟基磷灰石; 多孔陶瓷; 纳米结构
Key words: Bone tissue engineering; cuttlefish bone; hydroxyapatite; porous ceramics; nanostructure
目录
墨鱼骨转化羟基磷灰石多孔陶瓷表面纳米结构调控及其对成骨细胞作用的研究
Format
Content
华西期刊社客户端
查看全文
关键词: 骨组织工程; 墨鱼骨; 羟基磷灰石; 多孔陶瓷; 纳米结构
Key words: Bone tissue engineering; cuttlefish bone; hydroxyapatite; porous ceramics; nanostructure
1. | Sopyan I, Mel M, Ramesh S, et al. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials, 2007, 8(1-2): 116-123. |
2. | Mohammad NF, Othman R, FY Yeoh. Controlling the pore characteristics of mesoporous apatite materials: Hydroxyapatite and carbonate apatite. Ceramics International, 2015, 41(9): 10624-10633. |
3. | Ohji T, Fukushima M. Macro-porous ceramics: processing and properties. International Materials Reviews, 2012, 57(2): 115-131. |
4. | Hammel EC, Ighodaro OLR, Okoli OI. Processing and properties of advanced porous ceramics: An application based review. Ceramics International, 2014, 40(10): 15351-15370. |
5. | Reinares-Fisac D, Veintemillas-Verdaguer S, Fernández-Díaz L. Conversion of biogenic aragonite into hydroxyapatite scaffolds in boiling solutions. Cryst Eng Comm, 2017, 19(1): 110-116. |
6. | 彭雅, 覃裕, 顾春松, 等. 骨髓间充质干细胞复合海螵蛸支架的部分生物学安全性评估. 中国生物医学工程学报, 2016, 35(5): 555-561. |
7. | Li HM, Zhou W, Yan XR, et al. Osteoinductive nanohydroxyapatite bone substitute prepared via in situ hydrothermal transformation of cuttlefish bone. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 816-824. |
8. | Kim BS, Kang HJ, Yang SS, et al. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomedical Materials, 2014, 9(2): 025004. |
9. | Kim BS, Yang SS, Yoon JH, et al. Enhanced bone regeneration by silicon-substituted hydroxyapatite derived from cuttlefish bone. Clinical Oral Implants Research, 2017, 28(1): 49-56. |
10. | Ducheyne P, Radin S, King L. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. Journal of Biomedical Materials Research, 1993, 27(1): 25-34. |
11. | Lin KL, Xia LG, Gan JB, et al. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Applied Materials & Interfaces, 2013, 5(16): 8008-8017. |
12. | Arjonen A, Kaukonen R, Ivaska J, et al. Filopodia and adhesion in cancer cell motility. Cell Adhesion & Migration, 2011, 5(5): 421-430. |
13. | Choi CH, Hagvall SH, Wu BM, et al. Cell interaction with three-dimensional sharp-tip nanotopography. Biomaterials, 2007, 28(9): 1672-1679. |
14. | Gupton SL, Gertler FB. Filopodia: the fingers that do the walking. Science’s STKE: 2007, 2007, (400): re5. |
15. | Onuma K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms. Progress in Crystal Growth and Characterization of Materials, 2006, 52(3): 223-245. |
16. | Nocerino N, Fulgione A, Iannaccone M, et al. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals. International Journal of Nanomedicine, 2014, 9: 1175-1184. |
17. | Yang Y, Wu QZ, Wang M, et al. Hydrothermal synthesis of hydroxyapatite with different morphologies: Influence of supersaturation of the reaction system. Crystal Growth & Design, 2014, 14(9): 4864-4871. |
18. | Cai YR, Jin J, Mei DP, et al. Effect of silk sericin on assembly of hydroxyapatite nanocrystals into enamel prism-like structure. Journal of Materials Chemistry, 2009, 19(32): 5751-5758. |
19. | Ohta K, Kikuchi M, Tanaka J, et al. Synthesis of c axes oriented hydroxyapatite aggregate. Chemistry Letters, 2002, 31(9): 894-895. |
20. | Grinnell F, Feld M, Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell, 1980, 19(2): 517-525. |
21. | Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. Journal of Biomedical Materials Research Part A, 2001, 57(2): 258-267. |
22. | Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342. |