中国修复重建外科杂志

中国修复重建外科杂志

吲哚菁绿造影在乳房重建中的应用进展

查看全文

目的 对吲哚菁绿(indocyanine green,ICG)造影在乳房重建中的应用进展进行综述。 方法 查阅国内外有关 ICG 造影在乳房重建中应用的文献,总结 ICG 造影历史沿革、化学成分、使用原理、使用方法及注意事项。 结果 ICG 是一种适用于术中血管灌注造影成像的荧光物质。ICG 造影及 SPY 灌注评估系统已逐渐用于乳房重建术中,包括组织扩张器及假体植入乳房重建和自体组织乳房重建,其与术者主观评估、手持多普勒血流探测仪、组织血氧测量及荧光素钠造影相比,有着明显优势及更多用途。 结论 ICG 造影可较准确评估乳房重建术中皮瓣灌注情况,从而指导术中决策,降低术后皮瓣相关并发症发生,并具有一定经济学效益。

Objective To summarize the application progress of indocyanine green (ICG) angiography in breast reconstruction. Methods The literature about the application of ICG angiography in breast reconstruction was reviewed and analyzed, including its history, chemical composition, principles, usages, and attentions. Results ICG is a kind of fluorescent substance used in medical diagnosis and various surgical fields, especially in intraoperative vascular angiography. ICG angiography and SPY system are gradually applied in breast reconstruction, including both prosthesis/tissue expander reconstruction and autologous reconstruction. Compared to clinical judgment, portable Doppler devices, tissue oximetry, and fluorescein angiography, ICG angiography obviously has more benefits and usages. Conclusion ICG angiography can reveal the perfusion of flaps during the operation instantly and accurately, which refines the intraoperative strategy in order to decrease the incidence of flap-related complications. Besides, it has some economic benefits to some extent.

关键词: 吲哚菁绿; 血管造影; 乳房重建

Key words: Indocyanine green; angiography; breast reconstruction

引用本文: 柳泽洋, 宋达疆, 李赞, 彭小伟, 周波, 吕春柳, 彭文, 欧延, 毛煌兴, 李慧. 吲哚菁绿造影在乳房重建中的应用进展. 中国修复重建外科杂志, 2018, 32(11): 1463-1468. doi: 10.7507/1002-1892.201803040 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Schlosser S, Wirth R, Plock JA, et al. Application of a new laser Doppler imaging system in planning and monitoring of surgical flaps. J Biomed Opt, 2010, 15(3): 036023.
2. Keller A. A new diagnostic algorithm for early prediction of vascular compromise in 208 microsurgical flaps using tissue oxygen saturation measurements. Ann Plast Surg, 2009, 62(5): 538-543.
3. Rübben A, Eren S, Krein R, et al. Infrared videoangiofluorography of the skin with indocyanine green-rat random cutaneous flap model and results in man. Microvasc Res, 1994, 47(2): 240-251.
4. Phillips BT, Lanier ST, Conkling N, et al. Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction: results of a prospective trial. Plast Reconstr Surg, 2012, 129(5): 778e-788e.
5. Fox IJ, Wood EH. Indocyanine green: physical and physiologic properties. Proc Staff Meet Mayo Clin, 1960, 35: 732-744.
6. Wheeler HO, Cranston WI, Meltzer JI. Hepatic uptake and biliary excretion of indocyanine green in the dog. Proc Soc Exp Biol Med, 1958, 99(1): 11-14.
7. Flower RW, Hochheimer BF. Clinical infrared absorption angiography of the choroid. Am J Ophthalmol, 1972, 73(3): 458-459.
8. Hayashi K, Hasegawa Y, Tazawa Y, et al. Clinical application of indocyanine green angiography to choroidal neovascularization. Jpn J Ophthalmol, 1989, 33(1): 57-65.
9. Scheider A, Schroedel C. High resolution indocyanine green angiography with a scanning laser ophthalmoscope. Am J Ophthalmol, 1989, 108(4): 458-459.
10. Gurtner GC, Jones GE, Neligan PC, et al. Intraoperative laser angiography using the SPY system: review of the literature and recommendations for use. Ann Surg Innov Res, 2013, 7: 1.
11. Newman MI, Samson MC. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J Reconstr Microsurg, 2009, 25(1): 21-26.
12. Desai ND, Miwa S, Kodama D, et al. A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J Thorac Cardiovasc Surg, 2006, 132(3): 585-594.
13. Moody ED, Viskari PJ, Colyer CL. Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl, 1999, 729(1-2): 55-64.
14. Cherrick GR, Stein SW, Leecy CM, et al. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest, 1960, 39: 592-600.
15. Choromokos E, Kogure K, David NJ. Infrared absorption angiography. J Biol Photogr Assoc, 1969, 37(2): 100-104.
16. Azuma R, Morimoto Y, Masumoto K, et al. Detection of skin perforators by indocyanine green fluorescence nearly infrared angiography. Plast Reconstr Surg, 2008, 122(4): 1062-1067.
17. Ludolph I, Arkudas A, Schmitz M, et al. Cracking the perfusion code?: Laser-assisted Indocyanine Green angiography and combined laser Doppler spectrophotometry for intraoperative evaluation of tissue perfusion in autologous breast reconstruction with DIEP or ms-TRAM flaps. J Plast Reconstr Aesthet Surg, 2016, 69(10): 1382-1388.
18. Munabi NC, Olorunnipa OB, Goltsman D, et al. The ability of intra-operative perfusion mapping with laser-assisted indocyanine green angiography to predict mastectomy flap necrosis in breast reconstruction: a prospective trial. J Plast Reconstr Aesthet Surg, 2014, 67(4): 449-455.
19. Sood M, Glat P. Potential of the SPY intraoperative perfusion assessment system to reduce ischemic complications in immediate postmastectomy breast reconstruction. Ann Surg Innov Res, 2013, 7: 9.
20. Komorowska-Timek E, Gurtner GC. Intraoperative perfusion mapping with laser-assisted indocyanine green imaging can predict and prevent complications in immediate breast reconstruction. Plast Reconstr Surg, 2010, 125(4): 1065-1073.
21. Duggal CS, Madni T, Losken A. An outcome analysis of intraoperative angiography for postmastectomy breast reconstruction. Aesthet Surg J, 2014, 34(1): 61-65.
22. Diep GK, Hui JY, Marmor S, et al. Postmastectomy reconstruction outcomes after intraoperative evaluation with indocyanine green angiography versus clinical assessment. Ann Surg Oncol, 2016, 23(12): 4080-4085.
23. Chattha A, Bucknor A, Chen AD, et al. Indocyanine green angiography use in breast reconstruction: A national analysis of outcomes and cost in 110,320 patients. Plast Reconstr Surg, 2018, 141(4): 825-828.
24. Rozen WM, Phillips TJ, Ashton MW, et al. Preoperative imaging for DIEA perforator flaps: a comparative study of computed tomographic angiography and Doppler ultrasound. Plast Reconstr Surg, 2008, 121(1): 9-16.
25. Quilichini J, Le Masurier P, Guihard T. Increasing the reliability of SIEA flap using peroperative fluorescent angiography with indocyanine green in breast reconstruction. Ann Chir Plast Esthet, 2010, 55(6): 531-538.
26. 周波, 周晓, 李赞, 等. 吲哚菁绿血管造影在自体组织乳房重建中的应用. 中国修复重建外科杂志, 2018, 32(4): 491-494.
27. Holm C, Mayr M, Höfter E, et al. Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography: a preliminary study. Microsurgery, 2009, 29(7): 509-514.
28. 刘岩, 穆籣, 李广学, 等. 显微外科血管吻合术中应用吲哚菁绿血管造影评价血管吻合通畅性的价值. 中国医药, 2017, 12(3): 434-437.
29. Holm C, Tegeler J, Mayr M, et al. Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience. Microsurgery, 2002, 22(7): 278-287.
30. Kanuri A, Liu AS, Guo L. Whom should we SPY? A cost analysis of laser-assisted indocyanine green angiography in prevention of mastectomy skin flap necrosis during prosthesis-based breast reconstruction Plast Reconstr Surg, 2014, 133(4): 448e-454e.
31. Pons G, Masia J, Loschi P, et al. A case of donor-site lymphoedema after lymph node-superficial circumflex iliac artery perforator flap transfer. J Plast Reconstr Aesthet Surg, 2014, 67(1): 119-123.
32. Moyer HR, Losken A. Predicting mastectomy skin flap necrosis with indocyanine green angiography: the gray area defined. Plast Reconstr Surg, 2012, 129(5): 1043-1048.