中国修复重建外科杂志

中国修复重建外科杂志

慢性创面清创技术的研究进展

查看全文

目的 对慢性创面清创技术的研究进展进行综述。 方法 广泛查阅近年来关于慢性创面清创技术的相关文献,对各种创面清创技术的原理、特点及适应证进行总结。 结果 清创对于慢性创面愈合至关重要,清创技术包括自溶性清创、酶清创、生物清创、机械清创、锐性手术清创、超声清创、水刀清创以低温等离子体射频清创等,各有优缺点。 结论 对于慢性创面应根据临床实际情况综合选择合适的清创技术,低温等离子体射频清创具明显优势和发展潜力,但确切疗效有待进一步研究完善。

Objective To review the research progress of chronic wound debridement. Methods The recent related literature concerning the mechanisms, advantages, limitations, and indications of the technologies of chronic wound debridement was extensively consulted, reviewed, and summarized. Results Debridement is essential for chronic wound healing, which includes autolytic debridement, enzymatic debridement, biodebridement, mechanical debridement, sharp/surgical debridement, ultrasound debridement, hydrosurgery debridement, and coblation debridement. Each technique has its own advantages and disadvantages. Conclusion There are many types of technologies of chronic wound debridement, which can be chosen according to clinical conditions. It is showed there are more significant advantages associated with the technique of coblation debridement relatively, which also has greater potential. Further study is needed to improve its efficacy.

关键词: 慢性创面; 清创技术; 创面愈合

Key words: Chronic wound; debridement; wound healing

引用本文: 路遥, 杨润功, 朱加亮. 慢性创面清创技术的研究进展. 中国修复重建外科杂志, 2018, 32(8): 1096-1101. doi: 10.7507/1002-1892.201801126 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Mukherjee PK, Mohamed S, Chandra J, et al. Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. Infect Immun, 2006, 74(7): 3804-3816.
2. Romero R, Schaudinn C, Kusanovic JP, et al. Detection of a microbial biofilm in intraamniotic infection. Am J Obstet Gynecol. 2008, 198(1): 131.e1-135.e5.
3. Lauderdale KJ, Malone CL, Boles BR, et al. Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res, 2010, 28(1): 55-61.
4. Mah TF, Pitts B, Pellock B, et al. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature, 2003, 426(6964): 306-310.
5. Wolcott RD, Cox S. More effective cell-based therapy through biofilm suppression. J Wound Care. 2013, 22(1): 26-31.
6. Percival SL, Hill KE, Williams DW, et al. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen, 2012, 20(5): 647-657.
7. O’Brien M. Exploring methods of wound debridement. Br J Community Nurs, 2002, 7(Sup 3): 10-18.
8. Falanga V. Classifications for wound bed preparation and stimulation of chronic wounds. Wound Repair Regen, 2000, 8(5): 347-352.
9. Schultz GS, Sibbald RG, Falanga V, et al. Wound bed preparation: a systematic approach to wound management. Wound Repair Regen, 2003, 11 Suppl 1: S1-S28.
10. Granick M, Boykin J, Gamelli R, et al. Toward a common language: surgical wound bed preparation and debridement. Wound Repair Regen, 2006, 14 Suppl 1: S1-S10.
11. Falanga V, Brem H, Ennis WJ, et al. Maintenance debridement in the treatment of difficult-to-heal chronic wounds. Recommendations of an expert panel. Ostomy Wound Manage, 2008, Suppl: 2-15.
12. Vowden KR, Vowden P. Wound debridement. Part 1: Non-sharp techniques. J Wound Care, 1999, 8(5): 237-240.
13. Vowden KR, Vowden P. Wound debridement. Part 2: Sharp techniques. J Wound Care, 1999, 8(6): 291-294.
14. Anderson I. Debridement methods in wound care. Nurs Stand, 2006, 20(24): 65-66, 68, 70.
15. Halim AS, Khoo TL, Saad AZ. Wound bed preparation from a clinical perspective. Indian J Plast Surg, 2012, 45(2): 193-202.
16. Eaglstein WH. Moist wound healing with occlusive dressings: a clinical focus. Dermatol Surg, 2001, 27(2): 175-181.
17. Eming S, Smola H, Hartmann B, et al. The inhibition of matrix metalloproteinase activity in chronic wounds by a polyacrylate superabsorber. Biomaterials, 2008, 29(19): 2932-2940.
18. Ramundo J, Gray M. Enzymatic wound debridement. J Wound Ostomy Continence Nurs, 2008, 35(3): 273-280.
19. Ozcan C, Ergün O, Celik A, et al. Enzymatic debridement of burn wound with collagenase in children with partial-thickness burns. Burns, 2002, 28(8): 791-794.
20. Rosenberg L, Lapid O, Bogdanov-Berezovsky A, et al. Safety and efficacy of a proteolytic enzyme for enzymatic burn debridement: a preliminary report. Burns, 2004, 30(8): 843-850.
21. Murthy MB, Murthy BK, Bhave S. Comparison of safety and efficacy of papaya dressing with hydrogen peroxide solution on wound bed preparation in patients with wound gape. Indian J Pharmacol, 2012, 44(6): 784-787.
22. Sherman RA. Maggot versus conservative debridement therapy for the treatment of pressure ulcers. Wound Repair Regen, 2002, 10(4): 208-214.
23. Sherman RA. Maggot therapy for foot and leg wounds. Int J Low Extrem Wounds, 2002, 1(2): 135-142.
24. Chan DC, Fong DH, Leung JY, et al. Maggot debridement therapy in chronic wound care. Hong Kong Med J, 2007, 13(5): 382-386.
25. Chambers L, Woodrow S, Brown AP, et al. Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br J Dermatol, 2003, 148(1): 14-23.
26. Turkmen A, Graham K, McGrouther DA. Therapeutic applications of the larvae for wound debridement. J Plast Reconstr Aesthet Surg, 2010, 63(1): 184-188.
27. Cazander G, van de Veerdonk MC, Vandenbroucke-Grauls CM, et al. Maggot excretions inhibit biofilm formation on biomaterials. Clin Orthop Relat Res, 2010, 468(10): 2789-2796.
28. Klaus K, Steinwedel C. Maggot debridement therapy: advancing to the past in wound care. Medsurg Nurs, 2015, 24(6): 407-411.
29. Eneroth M, van Houtum WH. The value of debridement and Vacuum-Assisted Closure (V.A.C.) Therapy in diabetic foot ulcers. Diabetes Metab Res Rev, 2008, 24 Suppl 1: S76-S80.
30. Anghel EL, DeFazio MV, Barker JC, et al. Current concepts in debridement: science and strategies. Plast Reconstr Surg, 2016, 138(3 Suppl): 82S-93S.
31. Rodd-Nielsen E, Harris CL. Conservative sharp wound debridement: an overview of Canadian education, practice, risk, and policy. J Wound Ostomy Continence Nurs, 2013, 40(6): 594-601.
32. Bradley BH, Cunningham M. Biofilms in chronic wounds and the potential role of negative pressure wound therapy: an integrative review. J Wound Ostomy Continence Nurs, 2013, 40(2): 143-149.
33. Scali C, Kunimoto B. An update on chronic wounds and the role of biofilms. J Cutan Med Surg, 2013, 17(6): 371-376.
34. Roy S, Elgharably H, Sinha M, et al. Mixed-species biofilm compromises wound healing by disrupting epidermal barrier function. J Pathol, 2014, 233(4): 331-343.
35. Long DM. Harvey cushing at Johns Hopkins. Neurosurgery, 1999, 45(5): 983-989.
36. Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects. Phys Ther, 2001, 81(7): 1351-1358.
37. Stanisic MM, Provo BJ, Larson DL, et al. Wound debridement with 25 kHz ultrasound. Adv Skin Wound Care, 2005, 18(9): 484-490.
38. Scherba G, Weigel RM, O’Brien WJ. Quantitative assessment of the germicidal efficacy of ultrasonic energy. Appl Environ Microbiol, 1991, 57(7): 2079-2084.
39. Suchkova V, Carstensen EL, Francis CW. Ultrasound enhancement of fibrinolysis at frequencies of 27 to 100 kHz. Ultrasound Med Biol, 2002, 28(3): 377-382.
40. Peschen M, Weichenthal M, Schöpf E, et al. Low-frequency ultrasound treatment of chronic venous leg ulcers in an outpatient therapy. Acta Derm Venereol, 1997, 77(4): 311-314.
41. Voigt J, Wendelken M, Driver V, et al. Low-frequency ultrasound (20-40 kHz) as an adjunctive therapy for chronic wound healing: a systematic review of the literature and meta-analysis of eight randomized controlled trials. Int J Low Extrem Wounds, 2011, 10(4): 190-199.
42. Ramundo J, Gray M. Is ultrasonic mist therapy effective for debriding chronic wounds? J Wound Ostomy Continence Nurs, 2008, 35(6): 579-583.
43. Granick M S, Posnett J, Jacoby M, et al. Efficacy and cost-effectiveness of a high-powered parallel waterjet for wound debridement[J]. Wound Repair Regen. 2006, 14(4): 394-397.
44. Mosti G, Iabichella ML, Picerni P, et al. The debridement of hard to heal leg ulcers by means of a new device based on Fluidjet technology. Int Wound J, 2005, 2(4): 307-314.
45. Caputo WJ, Beggs DJ, Defede JL, et al. A prospective randomised controlled clinical trial comparing hydrosurgery debridement with conventional surgical debridement in lower extremity ulcers. Int Wound J, 2008, 5(2): 288-294.
46. Vanwijck R, Kaba L, Boland S, et al. Immediate skin grafting of sub-acute and chronic wounds debrided by hydrosurgery. J Plast Reconstr Aesthet Surg, 2010, 63(3): 544-549.
47. Bowling FL, Stickings DS, Edwards-Jones V, et al. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination. J Foot Ankle Res, 2009, 2: 13.
48. Maragakis LL, Cosgrove SE, Song X, et al. An outbreak of multidrug-resistant Acinetobacter baumannii associated with pulsatile lavage wound treatment. JAMA, 2004, 292(24): 3006-3011.
49. Daeschlein G, Lehnert W, Arnold A, et al. Hygienic safety of a new hydrodynamic wound debridement system. Dermatol Surg, 2010, 36(9): 1426-1438.
50. Angobaldo J, Marks M. Prevention of projectile and aerosol contamination during pulsatile lavage irrigation using a wound irrigation bag. Wounds, 2008, 20(6): 167-170.
51. Bortnick DP, Plastic Surgery Educational Foundation DATA Committee. Coblation: an emerging technology and new technique for soft-tissue surgery. Plast Reconstr Surg, 2001, 107(2): 614-615.
52. Chen MJ, Yang C, Zhang SY, et al. Use of coblation in arthroscopic surgery of the temporomandibular joint. J Oral Maxillofac Surg, 2010, 68(9): 2085-2091.
53. Paramasivan VK, Arumugam SV, Kameswaran M. Randomised comparative study of adenotonsillectomy by conventional and coblation method for children with obstructive sleep apnoea. Int J Pediatr Otorhinolaryngol, 2012, 76(6): 816-821.
54. Zhu H, Zhou XZ, Cheng MH, et al. The efficacy of coblation nucleoplasty for protrusion of lumbar intervertebral disc at a two-year follow-up. Int Orthop, 2011, 35(11): 1677-1682.
55. Kramer A, Hubner NO, Weltmann KD, et al. Polypragmasia in the therapy of infected wounds-conclusions drawn from the perspectives of low temperature plasma technology for plasma wound therapy. GMS Krankenhhyg Interdiszip, 2008, 3(1): 13.
56. Sönnergren HH, Strömbeck L, Faergemann J. Antimicrobial effects of plasma-mediated bipolar radiofrequency ablation on bacteria and fungi relevant for wound infection. Acta Derm Venereol, 2012, 92(1): 29-33.
57. Nusbaum AG, Gil J, Rippy MK, et al. Effective method to remove wound bacteria: comparison of various debridement modalities in an in vivo porcine model. J Surg Res, 2012, 176(2): 701-707.
58. Yang R, Zuo T, Zhu J, et al. Effect of radiofrequency ablation on healing of infected full-thickness wounds in minipigs. Int J Low Extrem Wounds, 2013, 12(4): 265-270.
59. Sönnergren HH, Polesie S, Strömbeck L, et al. Bacteria aerosol spread and wound bacteria reduction with different methods for wound debridement in an animal model. Acta Derm Venereol, 2015, 95(3): 272-277.
60. Bekara F, Chaput B, Téot L, et al. Coblation therapy in the management of chronic wounds. Plast Reconstr Surg, 2017, 139(4): 1026e-1028e.