中国修复重建外科杂志

中国修复重建外科杂志

膝关节自体软骨细胞移植术后康复的研究进展

查看全文

目的 总结膝关节自体软骨细胞移植术(autologous chondrocyte implantation,ACI)术后康复的研究进展。 方法 查阅近年来国内外 ACI 术后康复相关的基础及临床研究,并进行总结分析。 结果 研究表明,ACI 术后移植物成熟分为 4 个阶段:增生期(术后 0~6 周)、过渡期(术后 6~12 周)、重塑期(术后 12~26 周)、成熟期(术后 26 周~2 年)。为了避免早期移植物损伤,适当刺激移植物和骨骼的整合过程,更快恢复关节功能,临床需针对术后不同阶段移植物的生物力学特性设计康复锻炼方案,主要体现在术后负重、运动范围、康复训练方式的过渡和调整。 结论 膝关节 ACI 术后应科学地逐步增加负重和运动范围,在不同阶段可借助相应的康复锻炼手段。但目前相关研究的证据等级较低,仍需更高质量、更大样本量的随机对照试验,进一步探讨完善康复方案。

Objective To summarize the research progress of rehabilitation after autologous chondrocyte implantation (ACI). Methods The literature related to basic science and clinical practice about rehabilitation after ACI in recent years was searched, selected, and analyzed. Results Based on the included literature, the progress of the graft maturation consists of proliferation phase (0-6 weeks), transition phase (6-12 weeks), remodeling phase (12-26 weeks), and maturation phase (26 weeks-2 years). To achieve early protection, stimulate the maturation, and promote the graft-bone integrity, rehabilitation protocol ought to be based on the biomechanical properties at different phases. Weight-bearing program, range of motion (ROM), and options or facilities of exercise are importance when considering a rehabilitation program. Conclusion It has been proved that the patients need a program with an increasingly progressive weight-bearing and ROM in principles of rehabilitation after ACI. Specific facilities can be taken at a certain phase. Evidences extracted in the present work are rather low and the high-quality and controlled trials still need to improve the rehabilitation protocol.

关键词: 膝关节; 软骨缺损; 软骨修复; 自体软骨细胞移植术; 康复

Key words: Knee; cartilage defect; cartilage repair; autologous chondrocyte implantation; rehabilitation

引用本文: 林奕鹏, 李韬, 熊燕, 李箭, 付维力. 膝关节自体软骨细胞移植术后康复的研究进展. 中国修复重建外科杂志, 2018, 32(6): 758-763. doi: 10.7507/1002-1892.201801034 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Welch T, Mandelbaum B, Tom M. Autologous chondrocyte implantation: Past, Present, and Future. Sports Med Arthrosc, 2016, 24(2): 85-91.
2. Hinckel BB, Gomoll AH. Autologous chondrocytes and next-generation matrix-based autologous chondrocyte implantation. Clin Sports Med, 2017, 36(3): 525-548.
3. Ebert JR, Smith A, Edwards PK, et al. Factors predictive of outcome 5 years after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint. Am J Sports Med, 2013, 41(6): 1245-1254.
4. Edwards PK, Ackland TR, Ebert JR. Accelerated weightbearing rehabilitation after matrix-induced autologous chondrocyte implantation in the tibiofemoral joint. Am J Sports Med, 2013, 41(10): 2314-2324.
5. Theodoropoulos JS, DeCroos AJN, Petrera M, et al. Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Knee Surg Sports Traumatol Arthrosc, 2016, 24(6): 2055-2064.
6. Vaca-Gonzalez JJ, Guevara JM, Moncayo MA, et al. Biophysical stimuli: A review of electrical and mechanical stimulation in hyaline cartilage. Cartilage, 2017. [Epub ahead of print]
7. Niethammer TR, Safi E, Ficklscherer A, et al. Graft maturation of autologous chondrocyte implantation: magnetic resonance investigation with T2 mapping. Am J Sports Med, 2014, 42(9): 2199-2204.
8. Elder SH, Kimura JH, Soslowsky LJ, et al. Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells. J Orthop Res, 2000, 18(1): 78-86.
9. Edwards PK, Ackland T, Ebert JR. Clinical rehabilitation guidelines for matrix-induced autologous chondrocyte implantation on the tibiofemoral joint. J Orthop Sports Phys Ther, 2014, 44(2): 102-119.
10. Breinan HA, Minas T, Barone L, et al. Histological evaluation of the course of healing of canine articular cartilage defects treated with cultured sutologous chondrocytes. Tissue Engineering, 1998, 4(1): 101-113.
11. Hirschmüller A, Baur H, Braun S, et al. Rehabilitation after autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med, 2011, 39(12): 2686-2696.
12. Xu L, Li Z, Lei L, et al. Spatial and temporal changes of subchondral bone proceed to articular cartilage degeneration in rats subjected to knee immobilization. Microsc Res Tech, 2016, 79(3): 209-218.
13. Ni GX, Zhou YZ, Chen W, et al. Different responses of articular cartilage to strenuous running and joint immobilization. Connect Tissue Res, 2016, 57(2): 143-151.
14. Nagai M, Aoyama T, Ito A, et al. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats. J Anat, 2015, 226(5): 447-457.
15. Campbell TM, Reilly K, Laneuville O, et al. Bone replaces articular cartilage in the rat knee joint after prolonged immobilization. Bone, 2017, 106: 42-51.
16. Nomura M, Sakitani N, Iwasawa H, et al. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthritis and Cartilage, 2017, 25(5): 727-736.
17. Nagai M, Ito A, Tajino J, et al. Remobilization causes site-specific cyst formation in immobilization-induced knee cartilage degeneration in an immobilized rat model. J Anat, 2016, 228(6): 929-939.
18. Dewan AK, Gibson MA, Elisseeff JH, et al. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. BioMed Research International, 2014, 2014(4): 1-11.
19. Minas T, Peterson L. Advanced techniques in autologous chondrocyte transplantation. Clin Sports Med, 1999, 18(1): 13-44.
20. Robertson WB, Fick D, Wood DJ, et al. MRI and clinical evaluation of collagen-covered autologous chondrocyte implantation (CACI) at two years. The Knee, 2007, 14(2): 117-127.
21. Ebert JR, Fallon M, Robertson WB, et al. Radiological assessment of accelerated versus traditional approaches to postoperative rehabilitation following matrix-induced autologous chondrocyte implantation. Cartilage, 2010, 2(1): 60-72.
22. Ebert JR, Edwards PK, Fallon M, et al. Two-year outcomes of a randomized trial investigating a 6-week return to full weightbearing after matrix-induced autologous chondrocyte implantation. Am J Sports Med, 2017, 45(4): 838-848.
23. Werner BC, Cosgrove CT, Gilmore CJ, et al. Accelerated return to sport after osteochondral autograft plug transfer. Orthop J Sports Med, 2017, 5(4): 2325967117702418.
24. Freedman BR, Sheehan FT, Lerner AL. MRI-based analysis of patellofemoral cartilage contact, thickness, and alignment in extension, and during moderate and deep flexion. The Knee, 2015, 22(5): 405-410.
25. Yazdi H, Mallakzadeh M, Sadat Farshidfar S, et al. The effect of tibial rotation on knee medial and lateral compartment contact pressure. Knee Surg Sports Traumatol Arthrosc, 2016, 24(1): 79-83.
26. Toonstra JL, Howell D, English RA, et al. Patient experiences of recovery after autologous chondrocyte implantation: a qualitative study. J Athl Train, 2016, 51(12): 1028-1036.
27. Matassi F, Duerinckx J, Vandenneucker H, et al. Range of motion after total knee arthroplasty: the effect of a preoperative home exercise program. Knee Surg Sports Traumatol Arthrosc, 2014, 22(3): 703-709.
28. Grindem H, Granan LP, Risberg MA, et al. How does a combined preoperative and postoperative rehabilitation programme influence the outcome of ACL reconstruction 2 years after surgery? A comparison between patients in the Delaware-Oslo ACL Cohort and the Norwegian National Knee Ligament Registry. Br J Sports Med, 2015, 49(6): 385-389.
29. Brandt KD. Response of joint structures to inactivity and to reloading after immobilization. Arthritis & Rheumatism, 2003, 49(2): 267-271.
30. Knapik DM, Harris JD, Pangrazzi G, et al. The basic science of continuous passive motion in promoting knee health: a systematic review of studies in a rabbit model. J Arthroscopic and Related Surgery, 2013, 29(10): 1722-1731.
31. Hambly K, Silvers HJ, Steinwachs M. Rehabilitation after articular cartilage repair of the knee in the football (soccer) player. Cartilage, 2011, 3(1_suppl): 50S-56S.
32. Ebert JR, Fallon M, Wood DJ, et al. A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med, 2017, 45(1): 59-69.
33. Nagase H, Kashiwagi M. Aggrecanases and cartilage matrix degradation. Arthritis Res Ther, 2003, 5(2): 94-103.
34. Takahashi I, Matsuzaki T, Yoshida S, et al. Differences in cartilage repair between loading and unloading environments in the rat knee. J Jpn Phys Ther Assoc, 2014, 17(1): 22-30.
35. Farr J, Jaggers R, Lewis H, et al. Evidence-based approach of treatment options for postoperative knee pain. Phys Sportsmed, 2014, 42(2): 58-70.
36. Sophie H, Jodie McClelland P, Benjamin M, et al. Effectiveness of aquatic exercise in improving lower limb strength in musculoskeletal conditions: a systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation, 2017, 98(1): 173-186.
37. Callaghan MJ, Guney H, Reeves ND, et al. A knee brace alters patella position in patellofemoral osteoarthritis: a study using weight bearing magnetic resonance imaging. Osteoarthritis Cartilage, 2016, 24(12): 2055-2060.
38. Yamaguchi S, Aoyama T, Ito A, et al. The effect of exercise on the early stages of mesenchymal stromal cell-induced cartilage repair in a rat osteochondral defect model. PLoS One, 2016, 11(3): e0151580.
39. Wondrasch B, Risberg MA, Zak L, et al. Effect of accelerated weightbearing after matrix-associated autologous chondrocyte implantation on the femoral condyle: a prospective, randomized controlled study presenting MRI-based and clinical outcomes after 5 years. Am J Sports Med, 2015, 43(1): 146-153.
40. Demange MK, Helito CP, Helito PV, et al. Effect of muscle contractions on cartilage: morphological and functional magnetic resonance imaging evaluation of the knee after spinal cord injury. Rev Bras Ortop, 2016, 51(5): 541-546.
41. Fremerey RW, Lobenhoffer P, Zeichen J, et al. Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament: a prospective, longitudinal study. J Bone Joint Surg (Br), 2000, 82(6): 801-806.
42. Wang M, Yuan Z, Ma N, et al. Advances and prospects in stem cells for cartilage regeneration. Stem Cells International, 2017, 2017: 1-16.
43. Mourcou Q, Fleury A, Diot B, et al. iProprio: a smartphone-based system to measure and improve proprioceptive function. Conf Proc IEEE Eng Med Biol Soc, 2016, 2016: 2622-2625.
44. Wang P, Liu C, Yang X, et al. Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model. Lasers Med Sci, 2014, 29(6): 1875-1885.
45. Tuna S, Balci N, Özçakar L. The relationship between femoral cartilage thickness and muscle strength in knee osteoarthritis. Clin Rheumatol, 2016, 35(8): 2073-2077.
46. Cooke MB, Nix C, Greenwood L, et al. No differences between alter G-trainer and active and passive recovery strategies on isokinetic strength, systemic oxidative stress and perceived muscle soreness after exercise-induced muscle damage. J Strength Cond Res, 2018, 32(3): 736-747.
47. Henkelmann R, Schneider S, Muller D, et al. Outcome of patients after lower limb fracture with partial weight bearing postoperatively treated with or without anti-gravity treadmill (alter G®) during six weeks of rehabilitation-a protocol of a prospective randomized trial. BMC Musculoskeletal Disorders, 2017, 18(1): 104.
48. Hambly K, Poomsalood S, Mundy E. Return to running following knee osteochondral repair using an anti-gravity treadmill: a case report. Phys Ther Sport, 2017, 26: 35-40.
49. Iijima H, Aoyama T, Ito A, et al. Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis. Osteoarthritis and Cartilage, 2015, 23(9): 1563-1574.
50. Bailey AK, Minshull C, Richardson J, et al. Improvement of outcomes with nonconcurrent strength and cardiovascular-endurance rehabilitation conditioning after ACI surgery to the knee. J Sport Rehabil, 2014, 23(3): 235-243.
51. Thoma LM, Flanigan DC, Chaudhari AM, et al. Quadriceps femoris strength and sagittal-plane knee biomechanics during stair ascent in individuals with articular cartilage defects in the knee. Journal of Sport Rehabilitation, 2014, 23(3): 259-269.
52. Ebert JR, Smith A, Edwards PK, et al. The progression of isokinetic knee strength after matrix-induced autologous chondrocyte implantation: implications for rehabilitation and return to activity. J Sport Rehabil, 2014, 23(3): 244-258.
53. Knarr BA, Higginson JS, Zeni JA. Change in knee contact force with simulated change in body weight. Comput Methods Biomech Biomed Engin, 2016, 19(3): 320-323.
54. Niethammer TR, Müller PE, Safi E, et al. Early resumption of physical activities leads to inferior clinical outcomes after matrix-based autologous chondrocyte implantation in the knee. Knee Surg Sports Traumatol Arthrosc, 2014, 22(6): 1345-1352.