中国修复重建外科杂志

中国修复重建外科杂志

多孔钽在骨组织工程中的研究进展

查看全文

目的 对多孔钽在骨组织工程中的研究进展作一综述。 方法 查阅近年多孔钽在制备、细胞生物学、表面修饰等领域的基础研究文献,并总结分析。 结果 多孔钽自身特有的理化性质赋予其良好的组织相容性、骨整合能力,并可诱导软骨、肌腱修复再生。目前因多孔钽制备条件苛刻、成本较高等因素,限制了其临床广泛应用;新的制备方法及表面修饰技术的发展,为拓展多孔钽的应用范围,优化其骨组织修复再生能力提供了新的路径。 结论 多孔钽在修复骨缺损方面具有独特优势,但仍需在材料制备及表面修饰方面有进一步突破。

Objective To review the basical research progress of porous tantalum in bone tissue engineering. Methods The related basical research in fabrication, cytobiology, and surface modification of porous tantalum was reviewed and analyzed. Results The outstanding physiochemical properties of porous tantalum granted its excellent performance in biocompatibility and osteointegration, as well as promoting cartilage and tendon tissue restoration. However, the clinical utilization of porous tantalum is somehow greatly limited by the complex and rigid commercial fabrication methods and extraordinary high cost. Along with the publication of novel fabrication and surface modification technology, the application of porous tantalum will be more extensive, the promotion in bone tissue regeneration will be more prominent. Conclusion Porous tantalum has advantage in bone defect restoration, and significant breakthrough technology is needed in fabrication methods and surface modification.

关键词: 多孔钽; 骨组织工程; 骨整合; 表面修饰

Key words: Porous tantalum; bone tissue enginnering; osteointegration; surface modification

引用本文: 丁孝权, 刘兴旺, 陈俊, 陈世益. 多孔钽在骨组织工程中的研究进展. 中国修复重建外科杂志, 2018, 32(6): 753-757. doi: 10.7507/1002-1892.201711040 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110): 920-926.
2. Li JJ, Ebied M, Xu J, et al. Current approaches to bone tissue engineering: The interface between biology and engineering. Adv Healthc Mater, 2018, 7(6): e1701061.
3. Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg, 2018, 6(2): 90-99.
4. Kim HD, Amirthalingam S, Kim SL, et al. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater, 2017, 6(23). doi: 10.1002/adhm.201700612.
5. Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1261-1274.
6. Mohandas G, Oskolkov N, McMahon MT, et al. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars), 2014, 74(2): 188-196.
7. Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop (Belle Mead NJ), 2002, 31(4): 216-217.
8. Liu Y, Bao C, Wismeijer D, et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C Mater Biol Appl, 2015, 49: 323-329.
9. Ling TX, Li JL, Zhou K, et al. The use of porous tantalum augments for the reconstruction of acetabular defect in primary total hip arthroplasty. J Arthroplasty, 2018, 33(2): 453-459.
10. Gee EC, Jordan R, Hunt JA, et al. Current evidence and future directions for research into the use of tantalum in soft tissue re-attachment surgery. Journal of Materials Chemistry B, 2016, 4(6): 1020-1034.
11. Li X, Wang L, Yu X, et al. Tantalum coating on porous ti6al4v scaffold using chemical vapor deposition and preliminary biological evaluation. Mater Sci Eng C Mater Biol Appl, 2013, 33(5): 2987-2994.
12. Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater, 2015, 14: 217-225.
13. Balla VK, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater, 2010, 6(8): 3349-3359.
14. Bencharit S, Byrd WC, Altarawneh S, et al. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res, 2014, 16(6): 817-826.
15. Rahbek O, Kold S, Zippor B, et al. Particle migration and gap healing around trabecular metal implants. Int Orthop, 2005, 29(6): 368-374.
16. Ninomiya JT, Struve JA, Krolikowski J, et al. Porous ongrowth surfaces alter osteoblast maturation and mineralization. J Biomed Mater Res A, 2015, 103(1): 276-281.
17. Sagomonyants KB, Hakim-Zargar M, Jhaveri A, et al. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res, 2011, 29(4): 609-616.
18. Wang Q, Zhang H, Li Q, et al. Biocompatibility and osteogenic properties of porous tantalum. Exp Ther Med, 2015, 9(3): 780-786.
19. Gordon WJ, Conzemius MG, Birdsall E, et al. Chondroconductive potential of tantalum trabecular metal. J Biomed Mater Res B Appl Biomater, 2005, 75(2): 229-233.
20. Jamil K, Chua KH, Joudi S, et al. Development of a cartilage composite utilizing porous tantalum, fibrin, and rabbit chondrocytes for treatment of cartilage defect. J Orthop Surg Res, 2015, 10: 27.
21. Reach JS Jr, Dickey ID, Zobitz ME, et al. Direct tendon attachment and healing to porous tantalum: an experimental animal study. J Bone Joint Surg (Am), 2007, 89(5): 1000-1009.
22. Babis GC, Stavropoulos NA, Sasalos G, et al. Metallosis and elevated serum levels of tantalum following failed revision hip arthroplasty——a case report. Acta Orthop, 2014, 85(6): 677-680.
23. Schoon J, Geissler S, Traeger J, et al. Multi-elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: In-depth analysis of a single case. Nanomedicine, 2017, 13(8): 2415-2423.
24. Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev, 2017, 112: 88-100.
25. Mas-Moruno C, Garrido B, Rodriguez D, et al. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications. J Mater Sci Mater Med, 2015, 26(2): 109.
26. Garcia-Gareta E, Hua J, Orera A, et al. Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomed Mater, 2017, 13(1): 015008.
27. Xu HH, Wang P, Wang L, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res, 2017, 5: 17056.
28. Barrère F, van der Valk CM, Meijer G, et al. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B Appl Biomater, 2003, 67(1): 655-665.
29. Li Y, Yang W, Li X, et al. Improving osteointegration and osteogenesis of three-dimensional porous ti6al4v scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces, 2015, 7(10): 5715-5724.
30. Wang Q, Zhang H, Gan H, et al. Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits. Int Orthop, 2018.[Epub ahead of print]
31. Guo X, Chen M, Feng W, et al. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin. Int J Nanomedicine, 2011, 6: 3057-3064.