Key words: Porous tantalum; tissue enginnering; osteointegration; surface modification
目录
多孔钽在骨组织工程中的研究进展
Format
Content
华西期刊社客户端
查看全文
Key words: Porous tantalum; tissue enginnering; osteointegration; surface modification
1. | Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260(5110): 920-926. |
2. | Li JJ, Ebied M, Xu J, et al. Current approaches to bone tissue engineering: The interface between biology and engineering. Adv Healthc Mater, 2018, 7(6): e1701061. |
3. | Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current concepts in scaffolding for bone tissue engineering. Arch Bone Jt Surg, 2018, 6(2): 90-99. |
4. | Kim HD, Amirthalingam S, Kim SL, et al. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater, 2017, 6(23). doi: 10.1002/adhm.201700612. |
5. | Asri RIM, Harun WSW, Samykano M, et al. Corrosion and surface modification on biocompatible metals: a review. Mater Sci Eng C Mater Biol Appl, 2017, 77: 1261-1274. |
6. | Mohandas G, Oskolkov N, McMahon MT, et al. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp (Wars), 2014, 74(2): 188-196. |
7. | Cohen R. A porous tantalum trabecular metal: basic science. Am J Orthop (Belle Mead NJ), 2002, 31(4): 216-217. |
8. | Liu Y, Bao C, Wismeijer D, et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C Mater Biol Appl, 2015, 49: 323-329. |
9. | Ling TX, Li JL, Zhou K, et al. The use of porous tantalum augments for the reconstruction of acetabular defect in primary total hip arthroplasty. J Arthroplasty, 2018, 33(2): 453-459. |
10. | Gee EC, Jordan R, Hunt JA, et al. Current evidence and future directions for research into the use of tantalum in soft tissue re-attachment surgery. Journal of Materials Chemistry B, 2016, 4(6): 1020-1034. |
11. | Li X, Wang L, Yu X, et al. Tantalum coating on porous ti6al4v scaffold using chemical vapor deposition and preliminary biological evaluation. Mater Sci Eng C Mater Biol Appl, 2013, 33(5): 2987-2994. |
12. | Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater, 2015, 14: 217-225. |
13. | Balla VK, Bodhak S, Bose S, et al. Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater, 2010, 6(8): 3349-3359. |
14. | Bencharit S, Byrd WC, Altarawneh S, et al. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res, 2014, 16(6): 817-826. |
15. | Rahbek O, Kold S, Zippor B, et al. Particle migration and gap healing around trabecular metal implants. Int Orthop, 2005, 29(6): 368-374. |
16. | Ninomiya JT, Struve JA, Krolikowski J, et al. Porous ongrowth surfaces alter osteoblast maturation and mineralization. J Biomed Mater Res A, 2015, 103(1): 276-281. |
17. | Sagomonyants KB, Hakim-Zargar M, Jhaveri A, et al. Porous tantalum stimulates the proliferation and osteogenesis of osteoblasts from elderly female patients. J Orthop Res, 2011, 29(4): 609-616. |
18. | Wang Q, Zhang H, Li Q, et al. Biocompatibility and osteogenic properties of porous tantalum. Exp Ther Med, 2015, 9(3): 780-786. |
19. | Gordon WJ, Conzemius MG, Birdsall E, et al. Chondroconductive potential of tantalum trabecular metal. J Biomed Mater Res B Appl Biomater, 2005, 75(2): 229-233. |
20. | Jamil K, Chua KH, Joudi S, et al. Development of a cartilage composite utilizing porous tantalum, fibrin, and rabbit chondrocytes for treatment of cartilage defect. J Orthop Surg Res, 2015, 10: 27. |
21. | Reach JS Jr, Dickey ID, Zobitz ME, et al. Direct tendon attachment and healing to porous tantalum: an experimental animal study. J Bone Joint Surg (Am), 2007, 89(5): 1000-1009. |
22. | Babis GC, Stavropoulos NA, Sasalos G, et al. Metallosis and elevated serum levels of tantalum following failed revision hip arthroplasty--a case report. Acta Orthop, 2014, 85(6): 677-680. |
23. | Schoon J, Geissler S, Traeger J, et al. Multi-elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: In-depth analysis of a single case. Nanomedicine, 2017, 13(8): 2415-2423. |
24. | Tobin EJ. Recent coating developments for combination devices in orthopedic and dental applications: A literature review. Adv Drug Deliv Rev, 2017, 112: 88-100. |
25. | Mas-Moruno C, Garrido B, Rodriguez D, et al. Biofunctionalization strategies on tantalum-based materials for osseointegrative applications. J Mater Sci Mater Med, 2015, 26(2): 109. |
26. | Garcia-Gareta E, Hua J, Orera A, et al. Biomimetic surface functionalization of clinically relevant metals used as orthopaedic and dental implants. Biomed Mater, 2017, 13(1): 015008. |
27. | Xu HH, Wang P, Wang L, et al. Calcium phosphate cements for bone engineering and their biological properties. Bone Res, 2017, 5: 17056. |
28. | Li Y, Yang W, Li X, et al. Improving osteointegration and osteogenesis of three-dimensional porous ti6al4v scaffolds by polydopamine-assisted biomimetic hydroxyapatite coating. ACS Appl Mater Interfaces, 2015, 7(10): 5715-5724. |
29. | Wang Q, Zhang H, Gan H, et al. Application of combined porous tantalum scaffolds loaded with bone morphogenetic protein 7 to repair of osteochondral defect in rabbits. Int Orthop, 2018.[Epub ahead of print] |
30. | Guo X, Chen M, Feng W, et al. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin. Int J Nanomedicine, 2011, 6: 3057-3064. |