中国修复重建外科杂志

中国修复重建外科杂志

多孔磷酸钙/骨基质明胶复合骨水泥修复兔腰椎骨缺损的实验研究

查看全文

目的 探讨多孔磷酸钙/骨基质明胶复合骨水泥(以下简称多孔复合骨水泥)修复兔腰椎骨缺损的效果。 方法 采用 Urist 等的方法制备成年新西兰兔骨基质明胶(bone matrix gelatin,BMG),参考 W/O/W 复乳法制作聚乳酸-羟基乙酸共聚物[poly(lactic-co-glycolic)acid,PLGA]空白微球,将 PLGA 空白微球和 BMG 与磷酸钙骨水泥(calcium phosphate cement,CPC)复合,构建多孔复合骨水泥。通过体外抗溃散观察、孔隙率测定及生物力学试验,观察其理化特性;并以 CPC 作对照。取 30 只 2 月龄新西兰兔,制备 L3 椎体大小为 4 mm×3 mm×3 mm 的骨缺损后,分别填入多孔复合骨水泥(实验组,n=15)和 CPC(对照组,n=15)。术后第 4、8、12 周, X 线片观察骨融合情况,micro-CT 分析骨密度(bone mineral density,BMD)、骨体积分数(bone volume fraction,BVF)、骨小梁厚度(trabecular thickness,Tb. Th.)、骨小梁数量(trabecular number,Tb.N.)和骨小梁分离度(trabecular spacing,Tb. Sp.),组织学观察新生骨形成情况。 结果 两种骨水泥均有较好抗溃散性,多孔复合骨水泥孔隙率为 55.06%±1.18%,抗压强度为(51.63±6.73)MPa,与 CPC的孔隙率(49.38%±1.75%)以及抗压强度(63.34±3.27)MPa 相比,差异有统计学意义(t=4.254,P=0.006;t=2.476,P=0.034)。X 线片观察示,随时间延长,两组材料与宿主之间的边界逐步模糊,且实验组第 12 周时边界已消失、对照组仍可见。micro-CT 检测各时间点实验组 BMD、BVF、Tb. Th.、Tb. N.以及 Tb. Sp.与对照组相比,差异均有统计学意义(P<0.05)。组织学观察示,随时间延长,两组植入材料中均见新骨生长,其中实验组新生骨与宿主骨形成骨性连接,优于对照组。 结论 多孔复合骨水泥具有骨诱导活性和骨传导双重作用,可以有效促进兔腰椎骨缺损修复重建。

Objective To investigate the effect of a porous calcium phosphate/bone matrix gelatin (BMG) composite cement (hereinafter referred to as the " porous composite cement”) for repairing lumbar vertebral bone defect in a rabbit model. Methods BMG was extracted from adult New Zealand rabbits according to the Urist’s method. Poly (lactic-co-glycolic) acid (PLGA) microsphere was prepared by W/O/W double emulsion method. The porous composite cement was developed by using calcium phosphate cement (CPC) composited with BMG and PLGA microsphere. The physicochemical characterizations of the porous composite cement were assessed by anti-washout property, porosity, and biomechanical experiment, also compared with the CPC. Thirty 2-month-old New Zealand rabbits were used to construct vertebral bone defect at L3 in size of 4 mm×3 mm×3 mm. Then, the bone defect was repaired with porous composite cement (experimental group, n=15) or CPC (control group, n=15). At 4, 8, and 12 weeks after implantation, each bone specimen was assessed by X-ray films for bone fusion, micro-CT for bone mineral density (BMD), bone volume fraction (BVF), trabecular thickness (Tb. Th.), trabecular number (Tb.N.), and trabecular spacing (Tb. Sp.), and histological section with toluidine blue staining for new-born bone formation. Results The study demonstrated well anti-washout property in 2 groups. The porous composite cement has 55.06%±1.18% of porosity and (51.63±6.73) MPa of compressive strength. The CPC has 49.38%±1.75% of porosity and (63.34±3.27) MPa of compressive strength. There were significant differences in porosity and compressive strength between different cements (t=4.254, P=0.006; t=2.476, P=0.034). X-ray films revealed that the zone between the cement and host bone gradually blurred with the time extending. At 12 weeks after implantation, the zone was disappeared in the experimental group, but clear in the control group. There were significant differences in BMD, BVF, Tb. Th., Tb. N., and Tb. Sp. between 2 groups at each time point (P<0.05). Histological observation revealed that there was new-born bone in the cement with the time extending in 2 groups. Among them, bony connection was observed between the new-born bone and the host in the experimental group, which was prior to the control group. Conclusion The porous composite cement has dual bioactivity of osteoinductivity and osteoconductivity, which are effective to promote bone defect healing and reconstruction.

关键词: 磷酸钙骨水泥; 骨基质明胶; 聚乳酸-羟基乙酸共聚物; 复合骨水泥;

Key words: Calcium phosphate cement; bone matrix gelatin; poly (lactic-co-glycolic) acid; composite cement; rabbit

引用本文: 王松, 杨函, 杨剑, 康建平, 王清, 宋跃明. 多孔磷酸钙/骨基质明胶复合骨水泥修复兔腰椎骨缺损的实验研究. 中国修复重建外科杂志, 2017, 31(12): 1462-1467. doi: 10.7507/1002-1892.201707097 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res, 1983, 62: 672-679.
2. Stiller M, Kluk E, Bohner M, et al. Performance of β-tricalcium phosphate granules and putty, bone grafting materials after bilateral sinus flooraugmentation in humans. Biomaterials, 2014, 35(10): 3154-3163.
3. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J, 2001, 10 Suppl 2: S114-121.
4. O’Neill R, McCarthy HO, Montufar EB, et al. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomater, 2017, 50: 1-19.
5. Niu LN, Jiao K, Wang TD, et al. A review of the bioactivity of hydraulic calcium silicate cements. J Dent, 2014, 42(5): 517-533.
6. Urist MR, DeLange RJ, Finerman GA. Bone cell differentiation and growth factors. Science, 1983, 220(4598): 680-686.
7. 袁清霞, 赵龙岩, 程杰, 等. W/O/W 复乳溶剂蒸发法制备水溶性药物微球研究进展. 中国生化药物杂志, 2012, 33(6):920-923.
8. 丁裕明. 新型磷酸钙复合骨水泥的制备及性能研究. 泸州: 西南医科大学, 2016.
9. Lee DJ, Padilla R, Zhang H, et al. Biological assessment of a calcium silicate incorporated hydroxyapatite-gelatin nanocomposite: a comparison to decellularized bone matrix. Biomed Res Int, 2014, 2014: 837524.
10. Roy A, Jhunjhunwala S, Bayer E, et al. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system. Mater Sci Eng C Mater Biol Appl, 2016, 59: 92-101.
11. Habraken WJ, Wolke JG, Mikos AG, et al. PLGA microsphere/calcium phosphate cement composites for tissue engineering: in vitro release and degradation characteristics. J Biomater Sci Polym Ed, 2008, 19(9): 1171-1188.
12. Wagoner-Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater, 2011, 7(1): 16-30.
13. Fernández E, Sarda S, Hamcerencu M, et al. High-strength apatitic cement by modification with superplasticizers. Biomaterials, 2005, 26(15): 2289-2296.
14. 张淑娴, 郭新全, 邱玉金, 等. 兔椎体骨折动物模型制备的初步探讨. 动物医学进展, 2013, 34(7): 131-134.
15. Maenz S, Brinkmann O, Kunisch E, et al. Enhanced bone formation in sheep vertebral bodies after minimally invasive treatment with a novel, PLGA fiber-reinforced brushite cement. Spine J, 2016, 17(5): 709-719.
16. Palmer I, Nelson J, Schatton W, et al. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study. J Mater Sci Mater Med, 2016, 27(12): 91.
17. Wang ZH, Zhang J, Zhang Q, et al. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering. Genet Mol Res, 2016, 15(3): 1-8.
18. 张育敏, 李晶, 牛晓军, 等. 聚乳酸/骨基质明胶多孔复合材料的生物相容性研究. 中国修复重建外科杂志, 2016, 30(2): 251-257.
19. Lamghari M, Berland S, Laurent A, et al. Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials, 2001, 22(6): 555-562.
20. Lamghari M, Antonietti P, Berland S, et al. Arthrodesis of lumbar spine transverse processes using nacre in rabbit. J Bone Miner Res, 2001, 16(12): 2232-2237.
21. Parker RM, Malham GM. Comparison of a calcium phosphate bone substitute with recombinant human bone morphogenetic protein-2: a prospective study of fusion rates, clinical outcomes and complications with 24-month follow-up. Eur Spine J, 2017, 26(3): 754-763.
22. Zheng YX, Wang J, Lin HT, et al. Reconstruction of orbital defect in rabbits with composite of calcium phosphate cement and recombinant human bone morphogenetic protein-2. Chin Med J (Engl), 2010, 123(24): 3658-3662.
23. Perrier M, Lu Y, Nemke B, et al. Acceleration of second and fourth metatarsal fracture healing with recombinant human bone morphogenetic protein-2/calcium phosphate cement in horses. Vet Surg, 2008, 37(7): 648-655.
24. Lovasik BP, Holland CM, Howard BM, et al. Anterior Cervical Discectomy and Fusion: Comparison of Fusion, Dysphagia, and Complication Rates Between Recombinant Human Bone Morphogenetic Protein-2 and Beta-Tricalcium Phosphate. World Neurosurg, 2017, 97: 674-683.e1.
25. Villavicencio AT, Burneikiene S. RhBMP-2-induced radiculitis in patients undergoing transforaminal lumbar interbody fusion: relationship to dose. Spine J, 2016, 16(10): 1208-1213.
26. Yu T, Dong C, Shen Z, et al. Vascularization of plastic calcium phosphate cement in vivo induced by in-situ-generated hollow channels. Mater Sci Eng C Mater Biol Appl, 2016, 68: 153-162.
27. Kasuya A, Sobajima S, Kinoshita M. In vivo degradation and new bone formation of calcium phosphate cement-gelatin powder composite related to macroporosity after in situ gelatin degradation. J Orthop Res, 2012, 30(7): 1103-1111.
28. Palmer I, Nelson J, Schatton W, et al. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study. J Mater Sci Mater Med, 2016, 27(12): 191.
29. Toth JM, Wang M, Lawson J, et al. Radiographic, biomechanical, and histological evaluation of rhBMP-2 in a 3-level intertransverse process spine fusion: an ovine study. J Neurosurg Spine, 2016, 25(6): 733-739.