中国修复重建外科杂志

中国修复重建外科杂志

应用 micro-CT 实现兔坐骨神经显微三维结构可视化研究

查看全文

目的 探讨通过 micro-CT 扫描新西兰大白兔坐骨神经标本,利用三维可视化软件 Mimics17.0 重建兔坐骨神经内部显微三维结构。 方法 取 6 只成年新西兰大白兔坐骨神经组织标本分成 A、B 组(n=3),分别用 1%、5%Lugol 液对两组标本染色,于染色 0.5、1.0、1.5、2.0、2.5、3.0、3.5 h 时,行光镜及 micro-CT 观察两组标本的显像变化,将显像良好的 micro-CT 图像序列导入 Mimics 软件,采用三维重建工具重建兔坐骨神经神经显微三维结构。 结果 A 组标本在染色 2.5 h、B 组标本在染色 1.5 h 时,经光镜及 micro-CT 观察可获得较为清晰的显微三维结构图像。图像显示新西兰大白兔的坐骨神经主要分 3 组神经束,且各神经束立体行径相对固定,Mimics 软件测量各神经束横截面积分别为(0.425±0.013)、(0.038±0.007)、(0.242±0.026)mm2,生成的数字化三维模型可在任意横断面观察坐骨神经内部显微结构。 结论 应用 micro-CT 可清晰真实显示兔坐骨神经显微三维结构,为建立大样本量周围神经显微解剖学数据库提供了可靠方法。

Objective To realize the visualization of three-dimensional microstructure of rabbit sciatic nerve bundles by micro-CT and three-dimensional visualization software Mimics17.0. Methods The sciatic nerve tissues from 6 New Zealand rabbits were divided into 2 groups (n=3), and the sciatic nerve tissues were stained by 1% (group A) and 5% (group B) Lugol solution respectively. After staining for 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 hours, the imaging changes of specimens were observed by light microscope and micro-CT. The clear micro-CT images were exported to the Mimics software to complete the visualization of three-dimensional microstructure of rabbit sciatic nerve according to three-dimensional reconstruction tool. Results The clear three-dimensional microstructure images could be observed in group A at 2.5 hours after staining and in group B at 1.5 hours after staining by light microscope and micro-CT. The sciatic nerve of New Zealand rabbits were divides into 3 bundles and each of them was relatively fixed. There was no obvious crossing or mergers between each bundle. The cross-sectional area of each bundle was (0.425±0.013), (0.038±0.007), and (0.242±0.026) mm2 respectively. The digital model could clearly reflect the microstructure of the sciatic nerve at all cross sections. Conclusion The internal structure of New Zealand rabbits sciatic nerve can be clearly reflected by micro-CT scanning. It provides a reliable method for establishing a nerve microstructure database with large amount specimens.

关键词: micro-CT; 坐骨神经; 显微结构; 三维可视化;

Key words: micro-CT; sciatic nerve; microstructure; three-dimensional visualization; rabbit

引用本文: 亚穆罕默德·阿力克, 伊力扎提·伊力哈木, 阿里木江·阿不来提, 买买艾力·玉山, 艾合买提江·玉素甫. 应用 micro-CT 实现兔坐骨神经显微三维结构可视化研究. 中国修复重建外科杂志, 2017, 31(12): 1490-1494. doi: 10.7507/1002-1892.201705055 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Liu Z, Han N, Kou Y, et al. Electrophysiological and imaging outcomes analysis in patients with peripheral nerve injury treated with biodegradable conduit small-gap (2 mm) tubulization: A 5-year follow-up. International Journal of Clinical & Experimental Medicine, 2017, 10(5):7774-7784.【核!未查到】
2. 朱家恺, 罗永湘, 陈统一. 现代周围神经外科学. 上海: 上海科学技术出版社, 2007: 404-405.
3. Lee JH, Lee JY, Yang SH, et al. Carbon nanotube-collagen three-dimensional culture of mesenchymal stem cells promotes expression of neural phenotypes and secretion of neurotrophic factors. Acta Biomater, 2014, 10(10): 4425-4436.
4. Hermenegildo JA, Roberts SL, Kim SY. Innervation pattern of the suprascapular nerve within supraspinatus: a three‐dimensional computer modeling study. Clin Anat, 2014, 27(4): 622-630.
5. Buytaert J, Goyens J, De Greef D, et al. Volume shrinkage of bone, brain and muscle tissue in sample preparation for micro-CT and light sheet fluorescence microscopy (LSFM). Microsc Microanal, 2014, 20(4): 1208-1217.
6. Carrera CA, Lan C, Escobar-Sanabria D, et al. The use of micro-CT with image segmentation to quantify leakage in dental restorations. Dent Mater, 2015, 31(4): 382-390.
7. Zhu S, Zhu Q, Liu X, et al. Three-dimensional reconstruction of the microstructure of human acellular nerve allograft. Sci Rep, 2016, 6: 30694.
8. Hopkins TM, Heilman AM, Liggett JA, et al. Combining micro-computed tomography with histology to analyze biomedical implants for peripheral nerve repair. J Neurosci Methods, 2015, 255: 122-130.
9. 陈增淦, 陈统一, 张键, 等. 臂丛神经显微结构的计算机三维重建. 中华骨科杂志, 2004, 24(8): 462-466.
10. Brill NA, Tyler DJ. Quantification of human upper extremity nerves and fascicular anatomy. Muscle Nerve, 2017, 56(3): 463-471.
11. 张升波, 刘海飞, 陈峰, 等. 周围神经损伤修复和治疗研究进展. 中华显微外科杂志, 2016, 39(2): 204-208.
12. Li A, Hokugo A, Yalom A, et al. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers. Biomaterials, 2014, 35(31): 8780-8790.
13. Dinis TM, Elia R, Vidal G, et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater, 2015, 41: 43-55.
14. Reganne M, Röthlisberger M, Guzman R, et al. Dual Functional Collagen Nerve Conduits for Bridging Critical Nerve Gaps. Journal of Neurological Surgery Part A: Central European Neurosurgery, 2015, 76(01): 059. 【核!未查到】
15. Johnson BN, Lancaster KZ, Zhen G, et al. 3D printed anatomical nerve regeneration pathways. Adv Funct Mater, 2015, 25(39): 6205-6217.