中国修复重建外科杂志

中国修复重建外科杂志

外泌体对缺血再灌注器官损伤的保护作用

查看全文

目的 总结外泌体对缺血再灌注器官损伤的保护作用,为其治疗提供新思路。 方法 广泛查阅近年国内外与外泌体治疗缺血再灌注损伤相关的文献,分析总结其作用机制。 结果 外泌体体积小,存在于血液、脑脊液、尿液等细胞外液中,能够穿透血脑屏障,可通过多种分子机制对心脏、脑等器官的缺血再灌注损伤起到保护作用,并且无肝、肾副作用。 结论 外泌体治疗可能成为逆转缺血再灌注器官损伤的新方法,了解外泌体对缺血再灌注损伤的保护作用及可能机制具有重要意义。

Objective To investigate the protective effect of the exosome on the organ damage induced by ische-mia-reperfusion (I/R) so as to provide a new way for the treatment of I/R damage. Methods The literature related to the treatment of I/R damage was reviewed and analyzed. Results The exosome volume is small and it is present in blood, cerebrospinal fluid, and urine, which has the function to cross the blood-brain barrier, and protect the heart, brain and other organs after I/R damage. Conclusion Exosome is a new material for the treatment of I/R organ injury, and it is important to understand the protective effect and possible mechanism.

关键词: 外泌体; 缺血再灌注; 器官损伤; 治疗

Key words: Exosome; ischemia-reperfusion; organ injury; treatment

引用本文: 黄静兰, 康冰瑶, 屈艺, 母得志. 外泌体对缺血再灌注器官损伤的保护作用. 中国修复重建外科杂志, 2017, 31(6): 751-754. doi: 10.7507/1002-1892.201701104 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant, 2015, 5(2): 52-67.
2. Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol, 2015, 192: 61-69.
3. Kalani A, Chaturvedi P, Kamat PK, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol, 2016, 79: 360-369.
4. Zeng M, Wei X, Wu Z, et al. Simulated ischemia/reperfusion- induced p65-Beclin 1-dependent autophagic cell death in human umbilical vein endothelial cells. Sci Rep, 2016, 6: 37448.
5. Chen HH, Lai PF, Lan YF, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J Cell Physiol, 2014, 229(9): 1202-1211.
6. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res, 2013, 10(3): 301-312.
7. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014, 30: 255-289.
8. Balusu S, Van Wonterghem E, De Rycke R, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med, 2016, 8(10): 1162-1183.
9. Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep, 2016, 6: 22519.
10. Skotland T, Ekroos K, Kauhanen D, et al. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer, 2017, 70: 122-132.
11. Sun L, Xu R, Sun X, et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy, 2016, 18(3): 413-422.
12. Munagala R, Aqil F, Jeyabalan J, et al. Bovine milk-derived exosomes for drug delivery. Cancer Lett, 2016, 371(1): 48-61.
13. Lässer C, Alikhani VS, Ekström K, et al. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med, 2011, 9: 9.
14. Timmers L, Lim SK, Arslan F, et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res, 2007, 1(2): 129-137.
15. Zhang ZW, Yang JJ, Yan WY, et al. Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair. Journal of the American Heart Association, 2016, 5: e002856.
16. Zhao Y, Sun L, Cao W, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cell Int, 2015, (2015): 761643.
17. Ibrahim AG, Cheng K, Marbán E. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports, 2014, 2(5): 606-619.
18. Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 2014, 9(2): e88685.
19. Agarwal U, George A, Bhutani S, et al. Experimental, Systems and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell-Derived Exosomes From Pediatric Patients. Circ Res, 2016. [Epub ahead of print]
20. Vicencio JM, Yellon DM, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol, 2015, 65(15): 1525-1536.
21. Cappellesso R, Tinazzi A, Giurici T, et al. Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol, 2014, 122(9): 685-693.
22. Guo S, Bai R, Liu W, et al. MicroRNA-210 is upregulated by hypoxia- inducible factor-1α in the stromal cells of giant cell tumors of bone. Mol Med Rep, 2015, 12(4): 6185-6192.
23. Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by Exosomal MicroRNA-21. Stem Cells Transl Med, 2016, 6(1): 209-222.
24. Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res, 2013,10(3): 301-312.
25. Park DR, Ko R, Kwon SH, et al. FlexPro MD, a Mixture of Krill Oil, Astaxanthin, and Hyaluronic Acid, Suppresses Lipopolysaccharide-Induced Inflammatory Cytokine Production Through Inhibition of NF-κB. J Med Food, 2016, 19(12): 1196-1203.
26. Shi Z, Lian A, Zhang F. Nuclear factor-κB activation inhibitor attenuates ischemia reperfusion injury and inhibits Hmgb1 expression. Inflamm Res, 2014, 63(11): 919-925.
27. Miller K, Dixit S, Bredlau AL, et al. Delivery of a drug cache to glioma cells overexpressing platelet-derived growth factor receptor using lipid nanocarriers. Nanomedicine (Lond), 2016, 11(6): 581-595.
28. Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke, 2017, 48(3): 747-753.
29. Drommelschmidt K, Serdar M, Bendix I, et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammationinduced preterm brain injury. Brain Behav lmmun, 2017, 60: 220-232.
30. Xin H, Li Y, Cui Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab, 2013, 33(11): 1711-1715.
31. Xin H, Li Y, Liu Z, et al. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells, 2013, 31(12): 2737-2746.
32. Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells, 2012, 30(7): 1556-1564.
33. Guitart K, Loers G, Buck F, et al. Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia, 2016, 64(6): 896-910.
34. Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release, 2015, 207: 18-30.
35. Caponnetto F, Manini I, Skrap M, et al. Size-dependent cellular uptake of exosomes. Nanomedicine, 2016, 13(3): 1011-1020