中国修复重建外科杂志

中国修复重建外科杂志

长时间不同强度负压对兔 BMSCs 成骨分化及增殖的影响研究

查看全文

目的 探讨长时间不同强度负压对兔 BMSCs 成骨分化及增殖的影响。 方法 取 4~6 月龄新西兰大白兔股骨骨髓,采用密度梯度离心法分离培养 BMSCs,并行流式细胞术及成骨诱导鉴定。取第 3 代细胞采用成骨诱导培养基诱导培养,并加载不同强度负压,分别为 0、75、150 mm Hg(1 mm Hg=0.133 kPa)(对照组、低负压组、高负压组);负压时间为 30 min/h。倒置显微镜下观察细胞生长状态,绘制细胞生长曲线;诱导 3、7、14 d 采用 ELISA 法检测细胞 ALP 活性,14 d 采用实时荧光定量 PCR 及 Western blot 检测各组Ⅰ型胶原、骨钙素(osteocalcin,OC)基因及蛋白表达。 结果 经流式细胞仪及成骨诱导鉴定所培养细胞为 BMSCs;第 3 代 BMSCs 为典型的长梭形和不规则形。诱导 4 d,高负压组细胞显著少于对照组及低负压组(P<0.05),低负压组与对照组比较差异无统计学意义(P>0.05);5~7 d 3 组间细胞数比较差异均有统计学意义(P<0.05),负压越大细胞增殖受抑制越明显。ALP 活性检测示,诱导 3 d 各组间比较差异无统计学意义(P>0.05);7 d,仅高负压组与对照组比较差异有统计学意义(P<0.05);14 d,3 组间比较差异均有统计学意义(P<0.05),负压越大 ALP 活性越高。实时荧光定量 PCR 及 Western blot 检测示,低负压组及高负压组Ⅰ型胶原和 OC mRNA 及蛋白表达量均显著高于对照组,高负压组高于低负压组,比较差异均有统计学意义(P<0.05)。 结论 随负压增高,兔 BMSCs 成骨能力逐渐增强,而细胞增殖能力逐渐受抑制。

Objective To investigate the effects of long time different negative pressures on osteogenic diffe-rentiation of rabbit bone mesenchymal stem cells (BMSCs). Methods The rabbit BMSCs were isolated and cultured by density gradient centrifugation. Flow cytometry was used to analyze expression of surface markers. The third passage cells cultured under condition of osteogenic induction and under different negative pressure of 0 mm Hg (control group), 75 mm Hg (low negative pressure group), and 150 mm Hg (high negative pressure group) (1 mm Hg=0.133 kPa), and the negative pressure time was 30 min/h. Cell growth was observed under phase contrast microscopy, and the growth curve was drawn; alkaline phosphatase (ALP) activity was detected by ELISA after induced for 3, 7, and 14 days. The mRNA and protein expressions of collagen type I (COL-I) and osteocalcin (OC) in BMSCs were analyzed by real-time fluorescence quantitative PCR and Western blot. Results The cultured cells were identified as BMSCs by flow cytometry. The third passage BMSCs exhibited typical long shuttle and irregular shape. Cell proliferation was inhibited with the increase of negative pressure. After induced for 4 days, the cell number of high negative pressure group was significantly less than that in control group and low negative pressure group (P<0.05), but there was no significant difference between the low negative pressure group and the control group (P>0.05); at 5-7 days, the cell number showed significant difference between 3 groups (P<0.05). The greater the negative pressure was, the greater the inhibition of cell proliferation was. There was no significant difference in ALP activity between groups at 3 days after induction (P>0.05); the ALP activity showed significant difference (P<0.05) between the high negative pressure group and the control group at 7 days after induction; and significant difference was found in the ALP activity between 3 groups at 14 days after induction (P<0.05). The greater the negative pressure was, the higher the ALP activity was. Real-time fluorescence quantitative PCR and Western blot detection showed that the mRNA and protein expressions of COL-I and OC protein were significantly higher in low negative pressure group and high negative pressure group than control group (P<0.05), and in the high negative pressure group than the low negative pressure group (P<0.05). Conclusion With the increase of the negative pressure, the osteogenic differentiation ability of BMSCs increases gradually, but the cell proliferation is inhibited.

关键词: BMSCs; 负压; 成骨分化; 细胞增殖;

Key words: Bone marrow mesenchymal stem cells; negative pressure; osteogenic differentiation; cell proliferation; rabbit

引用本文: 赵伯文, 张宏伟, 徐强, 葛权虎, 李伯龙, 彭心宇, 吴向未. 长时间不同强度负压对兔 BMSCs 成骨分化及增殖的影响研究. 中国修复重建外科杂志, 2017, 31(5): 594-599. doi: 10.7507/1002-1892.201701095 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Fleischmann W, Strecker W, Bombelli M, et al. Vacuum sealing as treatment of soft tissue damage in open fractures. Unfallchirurg, 1993, 96(9): 488-492.
2. Saxena V, Hwang CW, Huang S, et al. Vacuum-assisted closure:microdeformations of wounds and cell proliferation. Plast Reconstr Surg, 2004, 114(5): 1086-1096.
3. 黄米娜, 刘堃, 梅晰凡, 等. 负压封闭引流技术在大面积皮肤缺损中的应用及护理. 军医进修学院学报, 2012, 33(8): 867-868.
4. Bassetto F, Lancerotto L, Salmaso R, et al. Histological evolution of chronic wounds under negative pressure therapy. J Plast Reconstr Aesthet Surg, 2012, 65(1): 91-99.
5. Cozart RF, Atchison JR, Lett ED, et al. The use of controlled subatmospheric pressure to promote wound healing in preparation for split-thickness skin grafting in a fourth degree burn. Tenn Med, 1999, 92(10): 382-384.
6. Ando J. Shear stress and vascular formation. Nihon Yakurigaku Zasshi, 1996,107(3): 141-152.
7. Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res, 2005, 319(2): 243-253.
8. 杨楠, 何惠宇, 胡杨, 等. 复合骨髓间充质干细胞同种异体支架骨修复羊髂骨极限缺损. 中国组织工程研究, 2013, 17(16): 2859-2868.
9. 王峰, 付志厚. 骨髓间充质干细胞复合异体骨修复松质骨缺损. 中国组织工程研究, 2013, 17(27): 4966-4973.
10. Yang Z, Yao JF, Xu P, et al. Functions and mechanisms ofintermittent negative pressure for osteogenesis in human bone marrow mesenchymal stem cells. Mol Med Rep, 2014, 9(4): 1331-1336.
11. 杨治, 朱养均, 程延, 等. 体外负压培养对骨髓间充质干细胞成骨活性的影响. 中国骨伤, 2011, 24(12): 1024-1027.
12. Zhang YG, Yang Z, Zhang H, et al. Effect of negative pressure on human bone marrow mesenchymal stem cellsin vitro. Connect Tissue Res, 2010, 51(1): 14-21.
13. Zhu J, Yu A, Qi B, et al. Effects of negative pressure wound therapy on mesenchymal stem cells proliferation and osteogenic differentiation in a fibrin matrix. PLoS One, 2014, 9(9): e107339
14. De R, Zemel A, Safran SA. Theoretical concepts and models of cellular mechanosensing. Methods Cell Bio, 2010, 98(2): 143-175.
15. Gong T, Zhao K, Yang G, et al. The control of Mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv healthc Mater, 2014, 3(10): 1608-1619.
16. 雷晓华, 邓智利, 宁立娜, 等. 机械力及力学信号转导影响干细胞命运的研究进展. 中国科学: 生命科学, 2014, 44(7): 639-648.
17. Han SJ, Sniadecki NJ. Simulations of the contractile cycle in cell migration using a biochemical mechanical model. Comput Methods Biomech Biomed Engin, 2011, 14(5): 459-468.
18. 高莺, 李继华, 韩立赤, 等. 张应力诱导大鼠骨髓间充质干细胞骨向分化及其差异基因表达分析. 华西口腔医学杂志, 2009, 27(2): 213-216.
19. Ding H, Chen S, Yin JH, et al. Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner. Mol Med Rep, 2014, 10(4): 2184-2190.
20. Prado-Lòpez S, Duffy MM, Baustian C, et al. The influence of hypoxia on the differentiationcapacities and immunosuppressive properties of clonalmouse mesenchymal stromal cell lines. Immunol Cell Biol, 2014, 92(7): 612-623.