中国修复重建外科杂志

中国修复重建外科杂志

肌腱干细胞在骨肌腱接点纤维软骨带重建中的作用机制研究进展

查看全文

目的 对肌腱干细胞(tendon-derived stem cells,TDSCs)在骨肌腱接点(bone-tendon junction,BTJ)纤维软骨带重建中的作用机制进行综述。 方法 广泛查阅国内外有关 TDSCs 促进 BTJ 纤维软骨带重建的研究文献,并总结分析。 结果 TDSCs 具有向骨细胞、纤维软骨细胞及肌腱细胞分化的能力,因此具备形成纤维软骨带的潜能;决定 TDSCs 成骨、成软骨分化的因素有力学刺激、生物活性因子、细胞外基质及炎性因子等。 结论 TDSCs 因其来源的特殊性,具有成为重建 BTJ 纤维软骨带种子细胞的潜能,通过外界刺激可诱导 TDSCs 形成类似于纤维软骨带结构。

Objective To summarize the mechanism research progress of tendon-derived stem cells (TDSCs) in the reconstruction of fibrocartilage zone at bone-tendon junction (BTJ). Methods The domestic and abroad related literature about TDSCs in the reconstruction of fibrocartilage zone at BTJ was summarized and analyzed. Results TDSCs can be induced to osteocytes, fibrochondrocytes, and tenocytes in vitro. Therefore, TDSCs have potential to reconstruct fibrocartilage zone at BTJ. Factors, such as mechanical stimulation, bioactive factor, extracelluar matrix, inflammatory factors, and so on, may influence osteogenic or chondrogenic differentiation of TDSCs. Conclusion Because of the specificity of origin and location of TDSCs, TDSCs have the potential to be the seed cells for BTJ fibrocartilage zone repair. By applying external stimuli, TDSCs can be induced to form structures which are similar to fibrocartilage zone.

关键词: 肌腱干细胞; 骨肌腱接点; 纤维软骨带; 重建

Key words: Tendon-derived stem cells; bone-tendon junction; fibrocartilage zone; Reconstruction

引用本文: 秦胜男, 董飞, 王文. 肌腱干细胞在骨肌腱接点纤维软骨带重建中的作用机制研究进展. 中国修复重建外科杂志, 2017, 31(8): 1006-1009. doi: 10.7507/1002-1892.201612078 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Khan KM, Maffulli N. Tendinopathy: an Achilles’ heel for athletes and clinicians. Clin J Sport Med, 1998, 8(3): 151-154.
2. Benjamin M, Toumi H, Ralphs JR, et al. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat, 2006, 208(4): 471-490.
3. Sullo A, Maffulli N, Capasso G, et al. The effects of prolonged peritendinous administration of PGE1 to the rat Achilles tendon: a possible animal model of chronic Achilles tendinopathy. J Orthop Sci, 2001, 6(4): 349-357.
4. Ljungqvist A, Schwellnus MP, Bachl N, et al. International Olympic Committee consensus statement: molecular basis of connective tissue and muscle injuries in sport. Clin Sports Med, 2008, 27(1): 231-239, x-xi.
5. Maffulli N, Sharma P, Luscombe KL. Achilles tendinopathy: aetiology and management. J R Soc Med, 2004, 97(10): 472-476.
6. Song F, Jiang D, Wang T, et al. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells. Cell Physiol Biochem, 2017, 41(3): 875-889.
7. Benjamin M, Ralphs JR. Biology of fibrocartilage cells. Int Rev Cytol, 2004, 233: 1-45.
8. Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 2007, 13(10): 1219-1227.
9. Rui YF, Lui PP, Li G, et al. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A, 2010, 16(5): 1549-1558.
10. Zhang J, Wang JH. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord, 2010, 11: 10.
11. Tan Q, Lui PP, Rui YF, et al. Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering. Tissue Eng Part A, 2012, 18(7-8): 840-851.
12. Ni M, Lui PP, Rui YF, et al. Tendon-derived stem cells (TDSCs) promote tendon repair in a rat patellar tendon window defect model. J Orthop Res, 2012, 30(4): 613-619.
13. Rui YF, Lui PP, Lee YW, et al. Higher BMP receptor expression and BMP-2-induced osteogenic differentiation in tendon-derived stem cells compared with bone-marrow-derived mesenchymal stem cells. Int Orthop, 2012, 36(5): 1099-1107.
14. Tan Q, Lui PP, Rui YF. Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells Dev, 2012, 21(5): 790-800.
15. Qin L, Fok P, Lu H, et al. Low intensity pulsed ultrasound increases the matrix hardness of the healing tissues at bone-tendon insertion-a partial patellectomy model in rabbits. Clin Biomech (Bristol, Avon), 2006, 21(4): 387-394.
16. Lu H, Qin L, Fok P, et al. Low-intensity pulsed ultrasound accelerates bone-tendon junction healing: a partial patellectomy model in rabbits. Am J Sports Med, 2006, 34(8): 1287-1296.
17. Hu J, Qu J, Xu D, et al. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res, 2014, 32(2): 204-209.
18. Wang W, Chen HH, Yang XH, et al. Postoperative programmed muscle tension augmented osteotendinous junction repair. Int J Sports Med, 2007, 28(8): 691-696.
19. Jelinsky SA, Archambault J, Li L, et al. Tendon-selective genes identified from rat and human musculoskeletal tissues. J Orthop Res, 2010, 28(3): 289-297.
20. Egerbacher M, Arnoczky SP, Caballero O, et al. Loss of homeostatic tension induces apoptosis in tendon cells: an in vitro study. Clin Orthop Relat Res, 2008, 466(7): 1562-1568.
21. Yang G, Crawford RC, Wang JH. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech, 2004, 37(10): 1543-1550.
22. 秦胜男, 王文, 傅世铨, 等. 大鼠肌腱干细胞的分离培养鉴定及拉力对其 Sox-9 表达的影响. 中国修复重建外科杂志, 2015, 29(7): 884-888.
23. Shi Y, Fu Y, Tong W, et al. Uniaxial mechanical tension promoted osteogenic differentiation of rat tendon-derived stem cells (rTDSCs) via the Wnt5a-RhoA pathway. J Cell Biochem, 2012, 113(10): 3133-3142.
24. Zhang J, Wang JH. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res, 2010, 28(5): 639-643.
25. Rui YF, Lui PP, Ni M, et al. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res, 2011, 29(3): 390-396.
26. Wang GX, Hu L, Hu HX, et al. In vivo osteogenic activity of bone marrow stromal stem cells transfected with Ad-GFP-hBMP-2. Genet Mol Res, 2014, 13(2): 4456-4465.
27. Kim HJ, Kang SW, Lim HC, et al. The role of transforming growth factor-beta and bone morphogenetic protein with fibrin glue in healing of bone-tendon junction injury. Connect Tissue Res, 2007, 48(6): 309-315.
28. Hashimoto Y, Yoshida G, Toyoda H, et al. Generation of tendon-to-bone interface " enthesis” with use of recombinant BMP-2 in a rabbit model. J Orthop Res, 2007, 25(11): 1415-1424.
29. Kovacevic D, Fox AJ, Bedi A, et al. Calcium-phosphate matrix with or without TGF-beta3 improves tendon-bone healing after rotator cuff repair. Am J Sports Med, 2011, 39(4): 811-819.
30. Vanderploeg EJ, Imler SM, Brodkin KR, et al. Oscillatory tension differentially modulates matrix metabolism and cytoskeletal organization in chondrocytes and fibrochondrocytes. J Biomech, 2004, 37(12):1941-1952.
31. Mouw JK, Connelly JT, Wilson CG, et al. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells, 2007, 25(3): 655-663.
32. Zhang J, Wang JH. Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J Orthop Res, 2010, 28(2): 198-203.
33. Hu JJ, Yin Z, Shen WL, et al. Pharmacological Regulation of In Situ Tissue Stem Cells Differentiation for Soft Tissue Calcification Treatment. Stem Cells, 2016, 34(4): 1083-1096.