中国修复重建外科杂志

中国修复重建外科杂志

不同机械牵伸条件对大鼠肌腱干细胞分化的影响

查看全文

目的 探讨不同机械牵伸条件对肌腱干细胞(tendon stem cells,TSCs)分化的影响,寻求 TSCs 成肌腱分化、成骨分化以及成脂肪分化的最佳单轴循环牵伸载荷。 方法 取 8 周龄雄性 SD 大鼠跟腱,采用酶消化法分离培养 TSCs。取第 3 代 TSCs,随机分为不同牵拉条件组(实验组 A~D 组)及静态培养组(对照组 E 组),其中 A 组牵拉强度 4%、频率 1 Hz,B 组牵拉强度 4%、频率 2 Hz,C 组牵拉强度 8%、频率 1 Hz,D 组牵拉强度 8%、频率 2 Hz。利用课题组自行研发的体外细胞单轴循环牵拉设备,沿培养皿长轴对 A~D 组细胞进行单轴循环机械牵伸,E 组细胞行静态培养。分别处理 12、24、48 h 后收集各组细胞,采用实时荧光定量 PCR 检测成腱分化相关基因 Scleraxis(SCX)、抗细胞黏合素 C(Tenascin C,TNC),成脂肪分化相关基因 CCAAT/增强子结合蛋白-α(CCAAT-enhancer-binding protein-α,CEBPα)、脂蛋白脂肪酶(lipoprteinlipase,LPL)及成骨分化相关基因 RUNX2、远端缺失基因 5(distal-less homeobox 5,DLX5)的表达;Western blot 检测 TNC、CEBPα 及 RUNX2 蛋白表达。 结果 实时荧光定量 PCR 检测示:SCX、TNC mRNA 相对表达量在 B 组牵拉 24 h 时显著高于其余各组,差异有统计学意义(P<0.05);CEBPα、LPL mRNA 相对表达量在 D 组牵拉 48 h 时显著高于其余各组,差异有统计学意义(P<0.05);RUNX2、DLX5 mRNA 相对表达量在 C 组牵拉 24 h 时显著高于其余各组,差异有统计学意义(P<0.05)。Western blot 检测示:B 组牵拉各时间点 TNC 蛋白表达均高于 E 组(P<0.05),同时牵拉 24 h 与 E 组相比 CEBPα 表达有显著抑制作用(P<0.05);C 组牵拉 24 h RUNX2 蛋白表达显著高于 E 组(P<0.05),同时牵拉 24、48 h TNC 蛋白表达显著低于 E 组(P<0.05);D 组牵拉 48 h CEBPα 蛋白表达显著高于 E 组(P<0.05),TNC 蛋白表达显著低于 E 组(P<0.05),RUNX2 蛋白表达与 E 组比较差异无统计学意义(P>0.05)。 结论 机械力学刺激可以促进 TSCs 发生分化,而且不同条件的牵拉载荷会引起不同方向分化。4%、2 Hz 牵拉 24 h 为成腱分化最佳条件,8%、1 Hz 牵拉 24 h 为成骨分化最佳条件,8%、2 Hz 牵拉 48 h 为成脂肪分化最佳条件。

Objective To investigate the effects of different mechanical stretch conditions on the differentiation of rat tendon stem cells (TSCs), to find the best uniaxial cyclic stretching for TSCs tenogenic differentiation, osteogenic differentiation, and adipogenic differentiation. Methods TSCs were isolated from the Achilles tendons of 8-week-old male Sprague Dawley rats by enzymatic digestion method and cultured. The TSCs at passage 3 were randomly divided into 5 groups: group A (stretch strength of 4% and frequency of 1 Hz), group B (stretch strength of 4% and frequency of 2 Hz), group C (stretch strength of 8% and frequency of 1 Hz), group D (stretch strength of 8% and frequency of 2 Hz), and group E (static culture). At 12, 24, and 48 hours after mechanical stretch, the mRNA expressions of the tenogenic differentiation related genes [Scleraxis (SCX) and Tenascin C (TNC)], the osteogenic differentiation related genes [runt related transcription factor 2 (RUNX2) and distal-less homeobox 5 (DLX5)], and the adipogenic differentiation related genes [CCAAT-enhancer-binding protein-α (CEBPα) and lipoprteinlipase (LPL)] were detected by real-time fluorescent quantitative PCR and the protein expressions of TNC, CEBPα, and RUNX2 were detected by Western blot. Results The mRNA expressions of SCX and TNC in group B were significantly higher than those in groups A, C, D, and E at 24 hours after mechanical stretch (P<0.05). The mRNA expressions of CEBPα and LPL in group D were significantly higher than those in groups A, B, C, and E at 48 hours after mechanical stretch (P<0.05). The mRNA expressions of RUNX2 and DLX5 in group C were significantly higher than those in groups A, B, D, and E at 24 hours after mechanical stretch (P<0.05). Western blot detection showed that higher protein expression of TNC in group B than group E at each time point after mechanical stretch (P<0.05), and the protein expression of CEBPα was significantly inhibited when compared with group E at 24 hours after mechanical stretch (P<0.05). At 24 hours after mechanical stretch, the protein expression of RUNX2 in group C was significantly higher than that in group E (P<0.05); and the protein expression of TNC was significantly lower than that in group E at 24 and 48 hours after mechanical stretch (P<0.05). At 48 hours after mechanical stretch, the protein expression of CEBPα was significantly increased and the protein expression of TNC was significantly decreased in group D when compared with group E (P<0.05), but no significant difference was found in the protein expression of RUNX2 between groups D and E (P>0.05). Conclusion The mechanical strain could promote differentiation of TSCs, and different parameter of stretch will lead to different differentiation. The best stretch condition for tenogenic differentiation is 4% strength and 2 Hz frequency for 24 hours; the best stretch condition for osteogenic differentiation is 8% strength and 1 Hz frequency for 24 hours; and the best stretch condition for adipogenic differentiation is 8% strength and 2 Hz frequency for 48 hours.

关键词: 机械牵拉; 肌腱干细胞; 分化; 大鼠

Key words: Mechanical stretch; tendon stem cells; differentiation; rat

引用本文: 李跑, 高尚, 周梅, 唐红, 穆米多, 张吉强, 唐康来. 不同机械牵伸条件对大鼠肌腱干细胞分化的影响. 中国修复重建外科杂志, 2017, 31(4): 481-488. doi: 10.7507/1002-1892.201611102 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Wren T, Yerby SA, Beaupré GS, et al. Mechanical properties of the human achilles tendon. Clin Biomech (Bristol Avon), 2001, 16(3): 245-251.
2. 魏传付, 王予彬, 王惠芳. 肌腱腱病发病机制的分子生物学研究进展. 中国康复医学杂志, 2011, 26(1): 90-93.
3. Kvist M. Achilles tendon injuries in athletes. Sports Med, 1994, 18(3): 173-201.
4. Magnan B, Bondi M, Pierantoni S, et al. The pathogenesis of Achilles tendinopathy: a systematic review. Foot Ankle Surg, 2014, 20(3): 154-159.
5. Lopez RG, Jung HG. Achilles tendinosis: treatment options. Clin Orthop Surg, 2015, 7(1): 1-7.
6. 唐康来, 陈磊. 跟腱病的外科治疗策略. 中国骨与关节外科, 2012, 5(4): 306-309.
7. Riley G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology (Oxford), 2004, 43(2): 131-142.
8. Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med, 2007, 13(10): 1219-1227.
9. Chen L, Dong SW, Liu JP, et al. Synergy of tendon stem cells and platelet-rich plasma in tendon healing. J Orthop Res, 2012, 30(6): 991-997.
10. Zhang J, Wang JH. BMP-2 mediates PGE(2)-induced reduction of proliferation and osteogenic differentiation of human tendon stem cells. J Orthop Res, 2012, 30(1): 47-52.
11. Wang J, Wang CD, Zhang N, et al. Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis, 2016, 7: e2221.
12. Parvizi M, Bolhuis-Versteeg LA, Poot AA, et al. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering. Biotechnol J, 2016, 11(7): 932-944.
13. Sun L, Qu L, Zhu R, et al. Effects of Mechanical Stretch on Cell Proliferation and Matrix Formation of Mesenchymal Stem Cell and Anterior Cruciate Ligament Fibroblast. Stem Cells Int, 2016, 2016: 9842075.
14. Lin X, Shi Y, Cao Y, et al. Recent progress in stem cell differentiation directed by material and mechanical cues. Biomed Mater, 2016, 11(1): 014109.
15. Zhang J, Wang JH. Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord, 2010, 11: 10.
16. Liu X, Chen W, Zhou Y, et al. Mechanical Tension Promotes the Osteogenic Differentiation of Rat Tendon-derived Stem Cells Through the Wnt5a/Wnt5b/JNK Signaling Pathway. Cell Physiol Biochem, 2015, 36(2): 517-530.
17. Li R, Liang L, Dou Y, et al. Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Biomed Res Int, 2015, 2015: 873251.
18. 胡超, 唐康来, 陈万, 等. 大鼠跟腱来源肌腱干细胞的分离培养及鉴定. 第三军医大学学报, 2013, 35(11): 1097-1101.
19. 曹洪辉, 唐康来, 陈磊, 等. 新型肌腱细胞循环牵伸载荷系统的研制及运行效果观察. 第三军医大学学报, 2010(06): 507-510.
20. Connizzo BK, Yannascoli SM, Soslowsky LJ. Structure-function relationships of postnatal tendon development: a parallel to healing. Matrix Biol, 2013, 32(2): 106-116.
21. 胡超, 李旭. 基于力学生物学的跟腱愈合研究现状. 中国康复医学杂志, 2015, 30(10): 1078-1081.
22. Thorpe CT, Screen HR. Tendon Structure and Composition. Adv Exp Med Biol, 2016, 920: 3-10.
23. Esquisatto MA, Joazeiro PP, Pimentel ER, et al. The effect of age on the structure and composition of rat tendon fibrocartilage. Cell Biol Int, 2007, 31(6): 570-577.
24. Dado D, Sagi M, Levenberg S, et al. Mechanical control of stem cell differentiation. Regen Med, 2012, 7(1): 101-116.
25. Wang JH, Komatsu I. Tendon Stem Cells: Mechanobiology and Development of Tendinopathy. Adv Exp Med Biol, 2016, 920: 53-62.
26. Zhang J, Wang JH. Mechanobiological response of tendon stem cells: implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res, 2010, 28(5): 639-643.
27. Zhang J, Yuan T, Wang JH. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats. Oncotarget, 2016, 7(8): 8498-8512.
28. 李国华, 韩亚军, 伊力哈木·托合提, 等. 过度运动对大鼠冈上肌腱损伤和腱细胞凋亡的影响. 新疆医科大学学报, 2011, 34(11): 1222-1227.
29. Zhang J, Wang JH. Moderate Exercise Mitigates the Detrimental Effects of Aging on Tendon Stem Cells. PLoS One, 2015, 10(6): e0130454.
30. Sharma P, Maffulli N. Biology of tendon injury: healing, modeling and remodeling. J Musculoskelet Neuronal Interact, 2006, 6(2): 181-190.
31. Shi Y, Fu Y, Tong W, et al. Uniaxial mechanical tension promoted osteogenic differentiation of rat tendon-derived stem cells (rTDSCs) via the Wnt5a-RhoA pathway. J Cell Biochem, 2012, 113(10): 3133-3142.