中国修复重建外科杂志

中国修复重建外科杂志

国产人工颈椎间盘界面压力对假体-骨界面骨整合的影响

查看全文

目的 探讨国产人工颈椎间盘置换术后,界面压力对假体终板-骨界面骨整合的影响。 方法 取国产人工颈椎间盘置换术后 1 周的山羊行颈椎 CT 扫描,建立 C3、4 椎体及假体三维有限元模型,分析静态模式下假体上、下终板压力分布情况,并根据压力分布范围分区。取人工颈椎间盘置换术后 6、12 个月山羊,行 Mirco-CT 扫描及三维重建,测量各个压力区骨体积分数(bone volume fraction,BVF)、骨小梁数目(trabecular number,Tb.N)、骨小梁厚度(trabecular thickness,Tb.Th)、骨小梁间隙(trabecular separation,Tb.Sp)、骨密度(bone mineral density,BMD)、骨表面积体积比(bone surface/bone volume,BS/BV)、骨小梁模型因子(trabecular pattern factor,Tb.Pf),并进行比较。另取 4 只正常山羊,切取 C3 椎体下终板和 C4 椎体上终板标本,制备直径 2 mm 圆柱形骨块,于取材后即刻以及培养 24、48 h 行实时荧光定量 PCR 检测 NF-κB 受体活化因子配体(nuclear factor κB ligand,RANKL)、骨保护素(osteoprotegerin,OPG)、巨噬细胞集落刺激因子(macrophage colony-stimulating factor,M-CSF)、TGF-β 基因表达。根据结果选择合适培养时间的样本进行力学加载后,同上法检测 RANKL、OPG、M-CSF、TGF-β 基因相对表达量;以同时间点未行力学加载标本作为正常对照。 结果 C3、4 节段三维有限元模型建立并给予 25 N 载荷后,在静止状态时人工颈椎间盘上终板压力较大区域在终板中央偏后,下终板压力较大区域在终板中部的前方及两条固定轨道上。按照压力值大小,将终板分为 5 个区域。Micro-CT 扫描观察,假体植入后 12 个月,上、下终板各区域 BMD、Tb.Th、BVF、Tb.N 均较 6 个月时增加(P<0.05),而 BS/BV、Tb.Sp、Tb.Pf 均降低(P<0.05)。培养 24、48 h RANKL、OPG 及 TGF-β 基因相对表达量与取材后即刻比较,差异均有统计学意义(P<0.05);培养 24、48 h 之间以上基因相对表达量比较差异均无统计学意义(P>0.05)。选择培养 24 h 样本进行力学加载测试。与对应正常对照组相比,C3 下终板及 C4 上终板压力组 RANKL、OPG 基因相对表达量以及 OPG/RANKL 明显上调(P<0.05);TGF-β、M-CSF 基因相对表达量比较,差异无统计学意义(P>0.05)。 结论 国产人工颈椎间盘终板压力分布特点不同,其中下终板受到压力稍大。压力不同区域对局部骨整合有重要影响,压力大的区域骨整合情况更佳。在假体终板-骨界面最大压力作用下成骨细胞增殖分子含量增加,有利于局部骨整合。

Objective To analyze the distribution of stress in the upper and lower plates of the prosthesis-bone interface, and the effect of interface pressure on osseointegration. Methods CT scanning was performed on goats at 1 week after artificial cervical disc replacement to establish the finite element model of C3, 4. The stress distribution of the upper and lower plates of the interface was observed. At 6 and 12 months after replacement, Micro-CT scan and three dimensional reconstruction were performed to measure the bone volume fraction (BVF), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular separation (Tb. Sp), bone mineral density (BMD), bone surface/bone volume (BS/BV), and trabecular pattern factor (Tb. Pf). The C3 lower plate and C4 upper plate of 4 normal goat were chosen to made the cylinder of the diameter of 2 mm. The gene expressions of receptor activator for nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), transforming growth factor β (TGF-β), and macrophage colony-stimulating factor (M-CSF) were detected by real time fluorescent quantitative PCR at immediate after cutting and at 24 and 48 hours after culture. The samples of appropriate culture time were selected to made mechanical loading, and the gene expressions of RANKL, OPG, M-CSF, and TGF-β were detected by real time fluorescent quantitative PCR; no mechanical loading samples were used as normal controls. Results Under 25 N axial loading, the stress of the upper plate of C3, 4 was concentrated to post median region, and the stress of the lower plate to middle-front region and two orbits. According to stress, the plate was divided into 5 regions. The Micro-CT scan showed that BMD, Tb.Th, BVF, and Tb.N significantly increased, and BS/BV, Tb.Sp, and Tb.Pf significantly decreased at 12 months after replacement when compared with ones at 6 months (P<0.05). At 24 and 48 hours after culture, the gene expressions of RANKL, OPG, and TGF-β were signifi-cantly higher than those at immediate (P<0.05), but no significant difference was found between at 24 and 48 hours after culture (P>0.05). The mechanical loading test results at 24 hours after culture showed that the RANKL and OPG gene expressions and OPG/RANKL ratio in C3 lower plate and C4 upper plate were significantly up-regulated when compared with controls (P<0.05), but no significant difference was shown in TGF-β and M-CSF gene expressions (P>0.05). Conclusion Domestic artificial cervical disc endplate has different pressure distribution, the stress of lower plate is higher than that of upper plate. Pressure has important effect on local osseointegration; the higher pressure area is, the osseointegration is better. Under the maximum pressure in interface, the osteoblast proliferation will increase, which is advantageous to the local osseointegration.

关键词: 人工颈椎间盘置换; 界面压力; 骨整合; 山羊

Key words: Artificial cervical disc replacement; interface pressure; osseointegration; goat

引用本文: 武文杰, 刘浩, 娄纪纲, 杨运北, 戎鑫, 许建中. 国产人工颈椎间盘界面压力对假体-骨界面骨整合的影响. 中国修复重建外科杂志, 2017, 31(4): 443-450. doi: 10.7507/1002-1892.201610121 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Chin KR, Pencle FJ, Seale JA, et al. Clinical outcomes of outpatient cervical total disc replacement compared to outpatient anterior cervical discectomy and fusion. Spine (Phila Pa 1976), 2016. [Epub ahead of print]
2. Hisey MS, Zigler JE, Jackson R, et al. Prospective, randomized comparison of one-level Mobi-C cervical total disc replacement vs. anterior cervical discectomy and fusion: results at 5-year follow-up. Int J Spine Surg, 2016, 10: 10.
3. Mcanany SJ, Overley S, Baird EO, et al. The 5-year cost-effectiveness of anterior cervical discectomy and fusion and cervical disc replacement: a Markov analysis. Spine (Phila Pa 1976), 2014, 39(23): 1924-1933.
4. Gornet MF, Burkus JK, Shaffrey ME, et al. Cervical disc arthroplasty with PRESTIGE LP disc versus anterior cervical discectomy and fusion: a prospective, multicenter investigational device exemption study. J Neurosurg Spine, 2015, 23(5): 1-16.
5. Wazen RM, Lefebvre LP, Baril E, et al. Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater, 2010, 94(1): 64-71.
6. Shao MM, Chen CH, Lin ZK, et al. Comparison of the more than 5-year clinical outcomes of cervical disc arthroplasty versus anterior cervical discectomy and fusion: A protocol for a systematic review and meta-analysis of prospective randomized controlled trials. Medicine (Baltimore), 2016, 95(51): e5733.
7. Sugiura T, Yamamoto K, Horita S, et al. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis. J Periodontal Implant Sci, 2016, 46(3): 152-165.
8. Lin CY, Kang H, Rouleau JP, et al. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: anin vivo image-based finite element study. Spine (Phila Pa 1976), 2009, 34(15): 1554-1560.
9. Galbusera F, Fantigrossi A, Raimondi MT, et al. Biomechanics of the C5-C6 spinal unit before and after placement of a disc prosthesis. Biomech Model Mechanobiol, 2006, 5(4): 253-261.
10. Devries NA. The biomechanics of the sheep cervical spine: An experimental and finite element analysis. Iowa city: University of Iowa, 2011.
11. Qin YX, Rubin CT, McLeod KJ. Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology. J Orthop Res, 1998, 16(4): 482-489.
12. Sun H, Li Q, Zhang Y, et al. Regulation of OPG and RANKL expressed by human dental follicle cells in osteoclastogenesis. Cell Tissue Res, 2015, 362(2): 399-405.
13. Kolf CM, Lin S, Helm J, et al. Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cellsin vitro. Stem Cell Res Ther, 2015, 6: 258.
14. Kameo Y, Adachi T. Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes. Acta Mechanica, 2014, 225(10): 2833-2840.
15. Mayeur O, Haugou G, Chaari F. Anisotropy and strain rate effects on bovine cortical bone: combination of high-resolution imaging and dynamic loading. Comput Methods Biomech Biomed Engin, 2013, 16 Suppl 1: 206-208.
16. Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg (Am), 1984, 66(3): 397-402.
17. Lanyon LE, Hampson WG, Goodship AE, et al. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand, 1975, 46(2): 256-268.
18. Galea GL, Price JS. Four-point bending protocols to study the effects of dynamic strain in osteoblastic cellsin vitro. Methods Mol Biol, 2015, 1226: 117-130.
19. Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocrine Reviews, 2013, 20(3): 345-357.
20. Martin TJ, Ng KW. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. Journal of Cellular Biochemistry, 1994, 56(3): 357-366.
21. Xu F, Dong Y, Huang X, et al. Pioglitazone affects the OPG/RANKL/RANK system and increase osteoclastogenesis. Mol Med Rep, 2016, 14(3): 2289-2296.
22. Tyagi AK, Prasad S, Majeed M, et al. Calebin A downregulates osteoclastogenesis through suppression of RANKL signaling. Archives of Biochemistry and Biophysics, 2016, 593(1): 80-89.
23. Shen Y, Jiang T, Wang R, et al. (5R)-5-Hydroxytriptolide (LLDT-8) inhibits osteoclastogenesis via RANKL/RANK/OPG signaling pathway. BMC Complement Altern Med, 2015, 15: 77.
24. Song F, Lin Z, Zhao J, et al. Eriodictyol inhibits RANKL-induced osteoclast formation and function via inhibition of NFATc1 activity. J Cell Physiol, 2016, 231(9): 1983-1993.
25. Ota Y, Niiro H, Ota SI, et al. Generation mechanism of RANKL(+) effector memory B cells: relevance to the pathogenesis of rheumatoid arthritis. Arthritis Res Ther, 2016, 18: 67.
26. Hensvold AH, Joshua V, Li W, et al. Serum RANKL levels associate with anti-citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res Ther, 2015, 17(1): 239.
27. Liu WW, Xu ZM, Li ZQ, et al. RANKL, OPG and CTR mRNA expression in the temporomandibular joint in rheumatoid arthritis. Exp Ther Med, 2015, 10(3): 895-900.
28. Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology, 2008, 47: 1635-1640.
29. Matsuda Y, Motokawa M, Kaku M, et al. RANKL and OPG expression: Jiggling force affects root resorption in rats. Angle Orthod, 2017, 87(1): 41-48.
30. Fazzalari NL, Kuliwaba JS, Atkins GJ, et al. The ratio of messenger RNA levels of receptor activator of nuclear factor κB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. Journal of Bone and Mineral Research, 2001, 16(6): 1015-1027.
31. Weivoda MM, Ruan M, Pederson L, et al. Osteoclast TGF-β receptor signaling induces Wnt11 secretion and couples bone resorption to bone formation. J Bone Miner Res, 2016, 31(1): 76-85.
32. Crane JL, Cao X. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest, 2014, 124(2): 466-472.
33. Omata Y, Nakamura S, Koyama T, et al. Identification of Nedd9 as a TGF-β-Smad2/3 target gene involved in RANKL-induced osteoclastogenesis by comprehensive analysis. PLoS One, 2016, 11(6): e0157992.